10 research outputs found

    Anisotropic Superexchange for nearest and next nearest coppers in chain, ladder and lamellar cuprates

    Full text link
    We present a detailed calculation of the magnetic couplings between nearest-neighbor and next-nearest-neighbor coppers in the edge-sharing geometry, ubiquitous in many cuprates. In this geometry, the interaction between nearest neighbor coppers is mediated via two oxygens, and the Cu-O-Cu angle is close to 90 degrees. The derivation is based on a perturbation expansion of a general Hubbard Hamiltonian, and produces numerical estimates for the various magnetic energies. In particular we find the dependence of the anisotropy energies on the angular deviation away from the 90 degrees geometry of the Cu-O-Cu bonds. Our results are required for the correct analysis of the magnetic structure of various chain, ladder and lamellar cuprates.Comment: 13 pages, Latex, 7 figure

    Magnetic polarons in weakly doped high-Tc superconductors

    Full text link
    We consider a spin Hamiltonian describing dd-dd exchange interactions between localized spins dd of a finite antiferromagnet as well as pp-dd interactions between a conducting hole (pp) and localized spins. The spin Hamiltonian is solved numerically with use of Lanczos method of diagonalization. We conclude that pp-dd exchange interaction leads to localization of magnetic polarons. Quantum fluctuations of the antiferromagnet strengthen this effect and make the formation of polarons localized in one site possible even for weak pp-dd coupling. Total energy calculations, including the kinetic energy, do not change essentially the phase diagram of magnetic polarons formation. For parameters reasonable for high-TcT_c superconductors either a polaron localized on one lattice cell or a small ferron can form. For reasonable values of the dielectric function and pp-dd coupling, the contributions of magnetic and phonon terms in the formation of a polaron in weakly doped high-TcT_c materials are comparable.Comment: revised, revtex-4, 12 pages 8 eps figure

    Spin polaron damping in the spin-fermion model for cuprate superconductors

    Full text link
    A self-consistent, spin rotational invariant Green's function procedure has been developed to calculate the spectral function of carrier excitations in the spin-fermion model for the CuO2 plane. We start from the mean field description of a spin polaron in the Mori-Zwanzig projection method. In order to determine the spin polaron lifetime in the self-consistent Born approximation, the self-energy is expressed by an irreducible Green's function. Both, spin polaron and bare hole spectral functions are calculated. The numerical results show a well pronounced quasiparticle peak near the bottom of the dispersion at (pi/2,pi/2), the absence of the quasiparticle at the Gamma-point, a rather large damping away from the minimum and an asymmetry of the spectral function with respect to the antiferromagnetic Brillouin zone. These findings are in qualitative agreement with photoemission data for undoped cuprates. The direct oxygen-oxygen hopping is responsible for a more isotropic minimum at (pi/2,pi/2).Comment: 18 pages, 13 figure

    Evolution of a Metal to Insulator Transition in Ca2x_{2-x}Nax_{x}CuO2_{2}Cl2_{2}, as seen by ARPES

    Full text link
    We present angle resolved photoemission (ARPES) data on Na-doped Ca2_2CuO2_2Cl2_2. We demonstrate that the chemical potential shifts upon doping the system across the insulator to metal transition. The resulting low energy spectra reveal a gap structure which appears to deviate from the canonical dx2y2 cos(kxa)cos(kya)d_{x2-y2} ~ |cos(k_x a)-cos(k_y a)| form. To reconcile the measured gap structure with d-wave superconductivity one can understand the data in terms of two gaps, a very small one contributing to the nodal region and a very large one dominating the anti-nodal region. The latter is a result of the electronic structure observed in the undoped antiferromagnetic insulator. Furthermore, the low energy electronic structure of the metallic sample contains a two component structure in the nodal direction, and a change in velocity of the dispersion in the nodal direction at roughly 50 meV. We discuss these results in connection with photoemission data on other cuprate systems.Comment: 10 pages, 12 figures, accepted by PRB; a high quality pdf is available at http://helios.physics.utoronto.ca/~fronning/RonningNaCCOCResub.pdf (2.2MB

    Growth and characterisation of bulk Sr2CuO2Cl2 single crystals

    No full text
    Large bulk single crystals of the Sr2CuO2Cl2 compound with dimensions of 15 x 6 x 4 mm(3) have been grown directly from the melt by the floating-zone method using a light-image furnace. The optimal growth conditions are found in a mixed atmosphere of 0.2 bar oxygen and 1.2 bar argon. Results of the characterisation have revealed thr high quality of the as-grown crystals. Furthermore, a possible congruent route of formation from the melt as well as the chemical stability of this compound is discussed

    Single hole dynamics in the CuO2 plane at half filling

    Get PDF
    We present a k-dependent study of the single hole states in Sr2CuO2Cl2. We demonstrate that the controversial ''1 eV peaks'' in the high T-c's are quasiparticles derived from the same O 2p states as the Zhang-Rice (ZR) singlets, but of different symmetry and intensity in those regions of the Brillouin zone where the hybridization with the correlated Cu 3d states vanishes by symmetry. We use this new source of information to estimate the quasiparticle weight of the ZR singlets, discuss the quasiparticle line shape, and suggest a strong k dependence of the self-energy

    Single hole dynamics in the CuO2 plane at half filling

    Get PDF
    We present a k-dependent study of the single hole states in Sr2CuO2Cl2. We demonstrate that the controversial ''1 eV peaks'' in the high T-c's are quasiparticles derived from the same O 2p states as the Zhang-Rice (ZR) singlets, but of different symmetry and intensity in those regions of the Brillouin zone where the hybridization with the correlated Cu 3d states vanishes by symmetry. We use this new source of information to estimate the quasiparticle weight of the ZR singlets, discuss the quasiparticle line shape, and suggest a strong k dependence of the self-energy
    corecore