205 research outputs found

    Urinary 8-OHdG as a Biomarker for Oxidative Stress: A Systematic Literature Review and Meta-Analysis.

    Get PDF
    Oxidative stress reflects a disturbance in the balance between the production and accumulation of reactive oxygen species (ROS). ROS are scavenged by the antioxidant system, but when in excess concentration, they can oxidize proteins, lipids, and DNA. DNA damage is usually repaired, and the oxidized products are excreted in urine. 8-hydroxy-2-deoxyguanosine is considered a biomarker for oxidative damage of DNA. It is needed to define background ranges for 8-OHdG, to use it as a measure of oxidative stress overproduction. We established a standardized protocol for a systematic review and meta-analysis to assess background ranges for urinary 8-OHdG concentrations in healthy populations. We computed geometric mean (GM) and geometric standard deviations (GSD) as the basis for the meta-analysis. We retrieved an initial 1246 articles, included 84 articles, and identified 128 study subgroups. We stratified the subgroups by body mass index, gender, and smoking status reported. The pooled GM value for urinary 8-OHdG concentrations in healthy adults with a mean body mass index (BMI) ≤ 25 measured using chemical methods was 3.9 ng/mg creatinine (interquartile range (IQR): 3 to 5.5 ng/mg creatinine). A significant positive association was observed between smoking and urinary 8-OHdG concentrations when measured by chemical analysis. No gender effect was observed

    Malondialdehyde and anion patterns in exhaled breath condensate among subway workers.

    Get PDF
    Underground transportation systems can contribute to the daily particulates and metal exposures for both commuter and subway workers. The redox and metabolic changes in workers exposed to such metal-rich particles have yet to be characterized. We hypothesize that the distribution of nitrosative/oxidative stress and related metabolic biomarkers in exhaled breath condensate (EBC) are modified depending on exposures. Particulate number and size as well as mass concentration and airborne metal content were measured in three groups of nine subway workers (station agents, locomotive operators and security guards). In parallel, pre- and post-shift EBC was collected daily during two consecutive working weeks. In this biological matrix, malondialdehyde, lactate, acetate, propionate, butyrate, formate, pyruvate, the sum of nitrite and nitrate (ΣNO <sub>x</sub> ) and the ratio nitrite/nitrate as well as metals and nanoparticle concentrations was determined. Weekly evolution of the log-transformed selected biomarkers as well as their association with exposure variables was investigated using linear mixed effects models with the participant ID as random effect. The professional activity had a strong influence on the pattern of anions and malondialdehyde in EBC. The daily number concentration and the lung deposited surface area of ultrafine particles was consistently and mainly associated with nitrogen oxides variations during the work-shift, with an inhibitory effect on the ΣNO <sub>x</sub> . We observed that the particulate matter (PM) mass was associated with a decreasing level of acetate, lactate and ΣNO <sub>x</sub> during the work-shift, suggestive of a build-up of these anions during the previous night in response to exposures from the previous day. Lactate was moderately and positively associated with some metals and with the sub-micrometer particle concentration in EBC. These results are exploratory but suggest that exposure to subway PM could affect concentrations of nitrogen oxides as well as acetate and lactate in EBC of subway workers. The effect is modulated by the particle size and can correspond to the body's cellular responses under oxidative stress to maintain the redox and/or metabolic homeostasis

    Urinary Malondialdehyde (MDA) Concentrations in the General Population-A Systematic Literature Review and Meta-Analysis.

    Get PDF
    Oxidative stress has been associated with various inflammation-related human diseases. It is defined as an imbalance between the production and elimination of reactive oxygen species (ROS). ROS can oxidize proteins, lipids, and DNA, and some of these oxidized products are excreted in urine, such as malondialdehyde (MDA), which is considered a biomarker for oxidative damage of lipids. To interpret changes of this biomarker as a measure of oxidative species overproduction in humans, a background range for urinary MDA concentration in the general population is needed. We sought to establish urinary MDA concentration ranges for healthy adult populations based on reported values in the available scientific literature. We conducted a systematic review and meta-analysis using the standardized protocol registered in PROSPERO (CRD42020146623). EMBASE, PubMed, Web of Science, and Cochrane library databases were searched from journal inception up to October 2020. We included 35 studies (divided into 47 subgroups for the quantitative analysis). Only studies that measured creatinine-corrected urinary MDA with high-performance liquid chromatography (HPLC) with mass spectrometry (MS), fluorescence detection, or UV photometry were included. The geometric mean (GM) of urinary MDA concentration was 0.10 mg/g creatinine and 95% percentile confidence interval (CI) 0.07-0.12. Age, geographical location but not sex, and smoking status had a significant effect on urinary MDA concentrations. There was a significant increasing trend of urinary MDA concentrations with age. These urinary MDA values should be considered preliminary, as they are based on mostly moderate to some low-quality evidence studies. Although urinary MDA can reliably reflect excessive oxidative stress in a population, the influence of physiological parameters that affect its meaning needs to be addressed as well as harmonizing the chemical analytical methods

    Does exposure to inflammatory particles modify the pattern of anion in exhaled breath condensate?

    Get PDF
    Exposure to environmental and occupational particulate matter (PM) induces health effects on the cardio-pulmonary system. In addition, associations between exposure to PM and metabolic syndromes like diabetes mellitus or obesity are now emerging in the literature. Collection of exhaled breath condensate (EBC) is an appealing non-invasive technique to sample pulmonary fluids. This hypothesis-generating study aims to (1) validate an ion chromatography method allowing the robust determination of different metabolism-related molecules (lactate, formate, acetate, propionate, butyrate, pyruvate, nitrite, nitrate) in EBC; (2) apply this method to EBC samples collected from workers exposed to quartz (a known inflammatory particle), to soapstone (a less inflammatory particle than quartz), as well as to controls. A multi-compound standard solution was used to determine the linearity range, detection limit, repeatability and bias from spiked EBC. The biological samples were injected without further treatment into an ion chromatograph with a conductivity detector. RTube <sup>®</sup> were used for field collection of EBC from 11 controls, 55 workers exposed to soapstone and 12 volunteers exposed to quartz dust. The analytical method used proved to be adequate for quantifying eight anions in EBC samples. Its sub-micromolar detection limits and repeatability, combined with a very simple sample preparation, allowed an easy and fast quantification of different glycolysis or nitrosative stress metabolites. Using multivariate discriminant analysis to maximize differences between groups, we observed a different pattern of anions with a higher formate/acetate ratio in the EBC samples for quartz exposed workers compared to the two other groups. We hypothesize that a modification of the metabolic signature could be induced by exposure to inflammatory particles like quartz and might be observed in the EBC via a change in the formate/acetate ratio

    Ontwikkeling en implementatie van een MH-verpakking voor paprika : rapportage van het derde jaar

    Get PDF
    <p><b>Copyright information:</b></p><p>Taken from "Phosphoprotein phosphatase-2A docks to Dishevelled and counterregulates Wnt3a/β-catenin signaling"</p><p>http://www.jmolecularsignaling.com/content/2/1/12</p><p>Journal of Molecular Signaling 2007;2():12-12.</p><p>Published online 25 Oct 2007</p><p>PMCID:PMC2211464.</p><p></p> immunoprecipitated with Anti-Dvl2 antibody. Bound proteins were resolved by SDS-PAGE, immunoblotting, and made visible by staining with either anti-Dvl2 or anti-PP2A C-subunit antibodies. Dvl2 and PP2AC association is displayed as "fold" (time = 0, set to "1"). Representative blots are displayed. The results are shown as mean values ± S.E. from 5 independent experiments., F9 cells expressing Rfz1 were stimulated with purified Wnt3a for the indicated time. Cells were washed with PBS and lysed. Cell lysates were applied to a small Sephadex G-50 column to remove small molecular substances that interfere with the assay, and PP2A activity determined. Results were shown as the mean values ± S.E. from 8 independent experiments

    Stability of condensate in superconductors

    Full text link
    According to the BCS theory the superconducting condensate develops in a single quantum mode and no Cooper pairs out of the condensate are assumed. Here we discuss a mechanism by which the successful mode inhibits condensation in neighboring modes and suppresses a creation of noncondensed Cooper pairs. It is shown that condensed and noncondensed Cooper pairs are separated by an energy gap which is smaller than the superconducting gap but large enough to prevent nucleation in all other modes and to eliminate effects of noncondensed Cooper pairs on properties of superconductors. Our result thus justifies basic assumptions of the BCS theory and confirms that the BCS condensate is stable with respect to two-particle excitations

    A framework for predicting X-nuclei transmitter gain using 1H signal

    Get PDF
    Commercial human MR scanners are optimised for proton imaging, containing sophisticated prescan algorithms with setting parameters such as RF transmit gain and power. These are not optimal for X-nuclear application and are challenging to apply to hyperpolarised experiments, where the non-renewable magnetisation signal changes during the experiment. We hypothesised that, despite the complex and inherently nonlinear electrodynamic physics underlying coil loading and spatial variation, simple linear regression would be sufficient to accurately predict X-nuclear transmit gain based on concomitantly acquired data from the proton body coil. We collected data across 156 scan visits at two sites as part of ongoing studies investigating sodium, hyperpolarised carbon, and hyperpolarised xenon. We demonstrate that simple linear regression is able to accurately predict sodium, carbon, or xenon transmit gain as a function of position and proton gain, with variation that is less than the intrasubject variability. In conclusion, sites running multinuclear studies may be able to remove the time-consuming need to separately acquire X-nuclear reference power calibration, inferring it from the proton instead

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Meta‐analysis of echocardiographic quantification of left ventricular filling pressure

    Get PDF
    Aims The clinical reliability of echocardiographic surrogate markers of left ventricular filling pressures (LVFPs) across different cardiovascular pathologies remains unanswered. The main objective was to evaluate the evidence of how effectively different echocardiographic indices estimate true LVFP. Methods and results Design: this is a systematic review and meta‐analysis. Data source: Scopus, PubMed and Embase. Eligibility criteria for selecting studies were those that used echocardiography to predict or estimate pulmonary capillary wedge pressure or left ventricular end‐diastolic pressures. Twenty‐seven studies met criteria. Only eight studies (30%) reported both correlation coefficient and bias between non‐invasive and invasively measured LVFPs. The majority of studies (74%) recorded invasive pulmonary capillary wedge pressure as a surrogate for left ventricular end‐diastolic pressures. The pooled correlation coefficient overall was r = 0.69 [95% confidence interval (CI) 0.63–0.75, P < 0.01]. Evaluation by cohort demonstrated varying association: heart failure with preserved ejection fraction (11 studies, n = 575, r = 0.59, 95% CI 0.53–0.64) and heart failure with reduced ejection fraction (8 studies, n = 381, r = 0.67, 95% CI 0.61–0.72). Conclusions Echocardiographic indices show moderate pooled association to invasively measured LVFP; however, this varies widely with disease state. In heart failure with preserved ejection fraction, no single echocardiography‐based metric offers a reliable estimate. In heart failure with reduced ejection fraction, mitral inflow‐derived indices (E/e′, E/A, E/Vp, and EDcT) have reasonable clinical applicability. While an integrated approach of several echocardiographic metrics provides the most promise for estimating LVFP reliably, such strategies need further validation in larger, patient‐specific studies
    corecore