2 research outputs found

    Questioning the catalytic effect of Ni nanoparticles on CO2 hydration and the very need of such catalysis for CO2 capture by mineralization from aqueous solution

    Get PDF
    © 2017 Elsevier Ltd Recent publications claimed a significant catalytic effect of nickel nanoparticles on the hydration of CO 2 to carbonic acid. Others have claimed that such catalysis can significantly accelerate the overall process of CO 2 capture by mineralization to CaCO 3 from aqueous solution. Having repeated the experiments as closely as possible, we observed no catalytic effect of Ni nanoparticles. Numerical modelling revealed that hydration is not the slowest reaction in the chain ending with mineralization; hence its catalysis cannot have a significant effect on CaCO 3 formation

    Staphylococcus aureus resists UVA at low irradiance but succumbs in the presence of TiO2 photocatalytic coatings

    Get PDF
    The aim of this study was to evaluate the bactericidal effect of reactive oxygen species (ROS) generated upon irradiation of photocatalytic TiO2 surface coatings using low levels of UVA and the consequent killing of Staphylococcus aureus. The role of intracellular enzymes catalase and superoxide dismutase in protecting the bacteria was investigated using mutant strains. Differences were observed in the intracellular oxidative stress response and viability of S. aureus upon exposure to UVA; these were found to be dependent on the level of irradiance and not the total UVA dose. The wild type bacteria were able to survive almost indefinitely in the absence of the coatings at low UVA irradiance (LI, 1 mW/cm2), whereas in the presence of TiO2 coatings, no viable bacteria were measurable after 24 h of exposure. At LI, the lethality of the photocatalytic effect due to the TiO2 surface coatings was correlated with high intracellular oxidative stress levels. The wild type strain was found to be more resistant to UVA at HI compared with an identical dose at LI in the presence of the TiO2 coatings. The UVA-irradiated titania operates by a “stealth” mechanism at low UVA irradiance, generating low levels of extracellular lethal ROS against which the bacteria are defenceless because the low light level fails to induce the oxidative stress defence mechanism of the bacteria. These results are encouraging for the deployment of antibacterial titania surface coatings wherever it is desirable to reduce the environmental bacterial burden under typical indoor lighting conditions
    corecore