9 research outputs found

    The stellar mass ratio of GK Persei

    Get PDF
    We study the absorption lines present in the spectra of the long-period cataclysmic variable GK Per during its quiescent state, which are associated with the secondary star. By comparing quiescent data with outburst spectra we infer that the donor star appears identical during the two states and the inner face of the secondary star is not noticeably irradiated by flux from the accreting regions. We obtain new values for the radial velocity semi-amplitude of the secondary star, Kk = 120.5 +- 0.7 km/s, a projected rotational velocity, Vksin i = 61.5 +- 11.8 km/s and consequently a measurement of the stellar mass ratio of GK Per, q = Mk/Mwd = 0.55 +- 0.21. The inferred white dwarf radial velocities are greater than those measured traditionally using the wings of Doppler-broadened emission lines suspected to originate in an accretion disk, highlighting the unsuitability of emission lines for mass determinations in cataclysmic variables. We determine mass limits for both components in the binary, Mk >= 0.48 +- 0.32 Msolar and Mwd >= 0.87 +- 0.24 Msolar.Comment: 8 pages, 8 figures, accepted by MNRA

    Precision tests with a new class of dedicated ether-drift experiments

    Full text link
    In principle, by accepting the idea of a non-zero vacuum energy, the physical vacuum of present particle physics might represent a preferred reference frame. By treating this quantum vacuum as a relativistic medium, the non-zero energy-momentum flow expected in a moving frame should effectively behave as a small thermal gradient and could, in principle, induce a measurable anisotropy of the speed of light in a loosely bound system as a gas. We explore the phenomenological implications of this scenario by considering a new class of dedicated ether-drift experiments where arbitrary gaseous media fill the resonating optical cavities. Our predictions cover most experimental set up and should motivate precise experimental tests of these fundamental issues.Comment: Accepted for publication in Eur. Phys. Journ.

    Lasers

    Full text link
    corecore