44 research outputs found

    The role of ν\nu-induced reactions on lead and iron in neutrino detectors

    Get PDF
    We have calculated cross sections and branching ratios for neutrino induced reactions on ^{208}Pb and ^{56}Fe for various supernova and accelerator-relevant neutrino spectra. This was motivated by the facts that lead and iron will be used on one hand as target materials in future neutrino detectors, on the other hand have been and are still used as shielding materials in accelerator-based experiments. In particular we study the inclusive ^{56}Fe(νe,e)Fe(\nu_e,e^-)^{56}Co and ^{208}Pb(νe,e)Pb(\nu_e,e^-)^{208}Bi cross sections and calculate the neutron energy spectra following the decay of the daughter nuclei. These reactions give a potential background signal in the KARMEN and LSND experiment and are discussed as a detection scheme for supernova neutrinos in the proposed OMNIS and LAND detectors. We also study the neutron-emission following the neutrino-induced neutral-current excitation of ^{56}Fe and ^{208}Pb.Comment: 23 pages (including 7 figures

    Signatures of Nucleon Disappearance in Large Underground Detectors

    Full text link
    For neutrons bound inside nuclei, baryon instability can manifest itself as a decay into undetectable particles (e.g., nνννˉ\it n \to \nu \nu \bar{\nu} ), i.e., as a disappearance of a neutron from its nuclear state. If electric charge is conserved, a similar disappearance is impossible for a proton. The existing experimental lifetime limit for neutron disappearance is 4-7 orders of magnitude lower than the lifetime limits with detectable nucleon decay products in the final state [PDG2000]. In this paper we calculated the spectrum of nuclear de-excitations that would result from the disappearance of a neutron or two neutrons from 12^{12}C. We found that some de-excitation modes have signatures that are advantageous for detection in the modern high-mass, low-background, and low-threshold underground detectors, where neutron disappearance would result in a characteristic sequence of time- and space-correlated events. Thus, in the KamLAND detector [Kamland], a time-correlated triple coincidence of a prompt signal, a captured neutron, and a β+\beta^{+} decay of the residual nucleus, all originating from the same point in the detector, will be a unique signal of neutron disappearance allowing searches for baryon instability with sensitivity 3-4 orders of magnitude beyond the present experimental limits.Comment: 13 pages including 6 figures, revised version, to be published in Phys.Rev.

    Paleobiology of titanosaurs: reproduction, development, histology, pneumaticity, locomotion and neuroanatomy from the South American fossil record

    Get PDF
    Fil: García, Rodolfo A.. Instituto de Investigación en Paleobiología y Geología. Museo Provincial Carlos Ameghino. Cipolletti; ArgentinaFil: Salgado, Leonardo. Instituto de Investigación en Paleobiología y Geología. General Roca. Río Negro; ArgentinaFil: Fernández, Mariela. Inibioma-Centro Regional Universitario Bariloche. Bariloche. Río Negro; ArgentinaFil: Cerda, Ignacio A.. Instituto de Investigación en Paleobiología y Geología. Museo Provincial Carlos Ameghino. Cipolletti; ArgentinaFil: Carabajal, Ariana Paulina. Museo Carmen Funes. Plaza Huincul. Neuquén; ArgentinaFil: Otero, Alejandro. Museo de La Plata. Universidad Nacional de La Plata; ArgentinaFil: Coria, Rodolfo A.. Instituto de Paleobiología y Geología. Universidad Nacional de Río Negro. Neuquén; ArgentinaFil: Fiorelli, Lucas E.. Centro Regional de Investigaciones Científicas y Transferencia Tecnológica. Anillaco. La Rioja; Argentin

    Explosive Nucleosynthesis and the Astrophysical r-Process

    No full text
    . We give an overview of chemical equilibria in explosive burning and the role which neutron and/or proton separation energies play. We focus then on the rapid neutron-capture process (r-process) which encounters unstable nuclei far from beta-stability with neutron separation energies in the range 1-4 MeV. Its observable features, like the abundances, witness nuclear structure as well as the conditions in the appropriate astrophysical environment. With the remaining lack of a full understanding of its astrophysical origin, parametrized calculations are still necessary. The classical approach is based on (constant) neutron number densities nn and temperatures T over duration timescales ø . Recent investigations, motivated by the neutrino wind scenario from hot neutron stars after a supernova explosion, followed the expansion of matter with initial entropies S and electron fractions Y e over expansion timescales ø . We compare the similarities and differences between the two approaches ..

    EXOTICS EXHIBIT MORE EVOLUTIONARY HISTORY THAN NATIVES: A COMPARISON OF THE ECOLOGY AND EVOLUTION OF EXOTIC AND NATIVE ANOLE LIZARDS

    No full text
    Long‐distance colonization was once rare causing species within regions to be closely related. Now, in the Anthropocene, biogeographic structure is being eroded by species introductions. Here, we contrast the ecology and evolution of native versus exotic Caribbean Anolis lizards and show that the once strong biogeographic structure in the clade has been altered by the introduction of 22 Anolis species. Anole introductions are more frequent and span greater distances than natural anole colonizations. As a result, exotic anole populations in the Anthropocene often contain more genetic diversity than native populations, and anole phylogenetic diversity on islands is rapidly increasing
    corecore