28 research outputs found

    An Agent-Based Approach to Self-Organized Production

    Full text link
    The chapter describes the modeling of a material handling system with the production of individual units in a scheduled order. The units represent the agents in the model and are transported in the system which is abstracted as a directed graph. Since the hindrances of units on their path to the destination can lead to inefficiencies in the production, the blockages of units are to be reduced. Therefore, the units operate in the system by means of local interactions in the conveying elements and indirect interactions based on a measure of possible hindrances. If most of the units behave cooperatively ("socially"), the blockings in the system are reduced. A simulation based on the model shows the collective behavior of the units in the system. The transport processes in the simulation can be compared with the processes in a real plant, which gives conclusions about the consequencies for the production based on the superordinate planning.Comment: For related work see http://www.soms.ethz.c

    What is the Oxygen Isotope Composition of Venus? The Scientific Case for Sample Return from Earth’s “Sister” Planet

    Get PDF
    Venus is Earth’s closest planetary neighbour and both bodies are of similar size and mass. As a consequence, Venus is often described as Earth’s sister planet. But the two worlds have followed very different evolutionary paths, with Earth having benign surface conditions, whereas Venus has a surface temperature of 464 °C and a surface pressure of 92 bar. These inhospitable surface conditions may partially explain why there has been such a dearth of space missions to Venus in recent years.The oxygen isotope composition of Venus is currently unknown. However, this single measurement (Δ17O) would have first order implications for our understanding of how large terrestrial planets are built. Recent isotopic studies indicate that the Solar System is bimodal in composition, divided into a carbonaceous chondrite (CC) group and a non-carbonaceous (NC) group. The CC group probably originated in the outer Solar System and the NC group in the inner Solar System. Venus comprises 41% by mass of the inner Solar System compared to 50% for Earth and only 5% for Mars. Models for building large terrestrial planets, such as Earth and Venus, would be significantly improved by a determination of the Δ17O composition of a returned sample from Venus. This measurement would help constrain the extent of early inner Solar System isotopic homogenisation and help to identify whether the feeding zones of the terrestrial planets were narrow or wide.Determining the Δ17O composition of Venus would also have significant implications for our understanding of how the Moon formed. Recent lunar formation models invoke a high energy impact between the proto-Earth and an inner Solar System-derived impactor body, Theia. The close isotopic similarity between the Earth and Moon is explained by these models as being a consequence of high-temperature, post-impact mixing. However, if Earth and Venus proved to be isotopic clones with respect to Δ17O, this would favour the classic, lower energy, giant impact scenario.We review the surface geology of Venus with the aim of identifying potential terrains that could be targeted by a robotic sample return mission. While the potentially ancient tessera terrains would be of great scientific interest, the need to minimise the influence of venusian weathering favours the sampling of young basaltic plains. In terms of a nominal sample mass, 10 g would be sufficient to undertake a full range of geochemical, isotopic and dating studies. However, it is important that additional material is collected as a legacy sample. As a consequence, a returned sample mass of at least 100 g should be recovered.Two scenarios for robotic sample return missions from Venus are presented, based on previous mission proposals. The most cost effective approach involves a “Grab and Go” strategy, either using a lander and separate orbiter, or possibly just a stand-alone lander. Sample return could also be achieved as part of a more ambitious, extended mission to study the venusian atmosphere. In both scenarios it is critical to obtain a surface atmospheric sample to define the extent of atmosphere-lithosphere oxygen isotopic disequilibrium. Surface sampling would be carried out by multiple techniques (drill, scoop, “vacuum-cleaner” device) to ensure success. Surface operations would take no longer than one hour.Analysis of returned samples would provide a firm basis for assessing similarities and differences between the evolution of Venus, Earth, Mars and smaller bodies such as Vesta. The Solar System provides an important case study in how two almost identical bodies, Earth and Venus, could have had such a divergent evolution. Finally, Venus, with its runaway greenhouse atmosphere, may provide data relevant to the understanding of similar less extreme processes on Earth. Venus is Earth’s planetary twin and deserves to be better studied and understood. In a wider context, analysis of returned samples from Venus would provide data relevant to the study of exoplanetary systems

    Learning to Look: A Dynamic Neural Fields Architecture for Gaze Shift Generation

    Full text link
    Abstract. Looking is one of the most basic and fundamental goal-directed behaviors. The neural circuitry that generates gaze shifts to-wards target objects is adaptive and compensates for changes in the sen-sorimotor plant. Here, we present a neural-dynamic architecture, which enables an embodied agent to direct its gaze towards salient objects in its environment. The sensorimotor mapping, which is needed to accu-rately plan the gaze shifts, is initially learned and is constantly updated by a gain adaptation mechanism. We implemented the architecture in a simulated robotic agent and demonstrated autonomous map learning and adaptation in an embodied setting

    Nine years of online mentoring for secondary school girls in STEM: an empirical comparison of three mentoring formats

    Full text link
    Online mentoring can be useful for supporting girls in science, technology, engineering, and mathematics (STEM). Yet, little is known about the differential effects of various online mentoring formats. We examine the general and relative effectiveness of three online mentoring formats, one‐on‐one mentoring, many‐to‐many group mentoring, and a hybrid form of the two. All three formats were implemented in different years in the Germany‐wide online‐only mentoring program, CyberMentor, whose platform enables communication and networking between up to 800 girls (in grades 5–13) and 800 women (STEM professionals) each year. We combined longitudinal mentee data for all first‐year participants (N = 4017 girls, Mage = 14.15 years) from 9 consecutive mentoring years to evaluate and compare the three mentoring formats. Overall, all formats effected comparable increases in mentees’ STEM activities and certainty about career plans. However, mentees’ communication behavior and networking behavior on the mentoring platform differed between the three formats. Mentees in the hybrid mentoring format showed the most extensive STEM‐related communication and networking on the platform. We also analyzed the explanatory contributions of STEM‐related communication and networking on interindividual differences in the developmental trajectories of mentees’ STEM activities, elective intentions in STEM, and certainty about career plans, for each format separately
    corecore