30 research outputs found
The Panchromatic Hubble Andromeda Treasury: Triangulum Extended Region (PHATTER). III. The Mass Function of Young Star Clusters in M33
We measure the star cluster mass function for the Local Group galaxy M33. We
use the catalog of stellar clusters selected from the Panchromatic Hubble
Andromeda Treasury: Triangulum Extended Region (PHATTER) survey. We analyze 711
clusters in M33 with
3.0 as determined from color-magnitude diagram fits to individual stars. The
M33 cluster mass function is best described by a Schechter function with power
law slope , and truncation mass
log() . The data show strong evidence
for a high-mass truncation, thus strongly favoring a Schechter function fit
over a pure power law. M33's truncation mass is consistent with the previously
identified linear trend between , and star formation rate surface density,
\SigSFR. We also explore the effect that individual cluster mass uncertainties
have on derived mass function parameters, and find evidence to suggest that
large cluster mass uncertainties have the potential to bias the truncation mass
of fitted mass functions on the one sigma level.Comment: 18 pages, 15 figures, 1 table, Accepted to ApJ (February 2, 2022
Running Spectral Index from Inflation with Modulations
We argue that a large negative running spectral index, if confirmed, might
suggest that there are abundant structures in the inflaton potential, which
result in a fairly large (both positive and negative) running of the spectral
index at all scales. It is shown that the center value of the running spectral
index suggested by the recent CMB data can be easily explained by an inflaton
potential with superimposed periodic oscillations. In contrast to cases with
constant running, the perturbation spectrum is enhanced at small scales, due to
the repeated modulations. We mention that such features at small scales may be
seen by 21 cm observations in the future.Comment: 7 pages, 6 figures, v2: published in JCA
The Planetary Nebula Luminosity Function at the Dawn of Gaia
The [O III] 5007 Planetary Nebula Luminosity Function (PNLF) is an excellent
extragalactic standard candle. In theory, the PNLF method should not work at
all, since the luminosities of the brightest planetary nebulae (PNe) should be
highly sensitive to the age of their host stellar population. Yet the method
appears robust, as it consistently produces < 10% distances to galaxies of all
Hubble types, from the earliest ellipticals to the latest-type spirals and
irregulars. It is therefore uniquely suited for cross-checking the results of
other techniques and finding small offsets between the Population I and
Population II distance ladders. We review the calibration of the method and
show that the zero points provided by Cepheids and the Tip of the Red Giant
Branch are in excellent agreement. We then compare the results of the PNLF with
those from Surface Brightness Fluctuation measurements, and show that, although
both techniques agree in a relative sense, the latter method yields distances
that are ~15% larger than those from the PNLF. We trace this discrepancy back
to the calibration galaxies and argue that, due to a small systematic error
associated with internal reddening, the true distance scale likely falls
between the extremes of the two methods. We also demonstrate how PNLF
measurements in the early-type galaxies that have hosted Type Ia supernovae can
help calibrate the SN Ia maximum magnitude-rate of decline relation. Finally,
we discuss how the results from space missions such as Kepler and Gaia can help
our understanding of the PNLF phenomenon and improve our knowledge of the
physics of local planetary nebulae.Comment: 12 pages, invited review at the conference "The Fundamental Cosmic
Distance Scale: State of the Art and Gaia Perspective", to appear in
Astrophysics and Space Scienc
Inflation, cold dark matter, and the central density problem
A problem with high central densities in dark halos has arisen in the context
of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is
often justified by appealing to the inflation scenario, inflationary models
with mild deviations from scale-invariance are not uncommon and models with
significant running of the spectral index are plausible. Even mild deviations
from scale-invariance can be important because halo collapse times and
densities depend on the relative amount of small-scale power. We choose several
popular models of inflation and work out the ramifications for galaxy central
densities. For each model, we calculate its COBE-normalized power spectrum and
deduce the implied halo densities using a semi-analytic method calibrated
against N-body simulations. We compare our predictions to a sample of dark
matter-dominated galaxies using a non-parametric measure of the density. While
standard n=1, LCDM halos are overdense by a factor of 6, several of our example
inflation+CDM models predict halo densities well within the range preferred by
observations. We also show how the presence of massive (0.5 eV) neutrinos may
help to alleviate the central density problem even with n=1. We conclude that
galaxy central densities may not be as problematic for the CDM paradigm as is
sometimes assumed: rather than telling us something about the nature of the
dark matter, galaxy rotation curves may be telling us something about inflation
and/or neutrinos. An important test of this idea will be an eventual consensus
on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our
successful models have values of sigma_8 approximately 0.75, which is within
the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1)
are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's
Comments, error in Eq. (18) corrected, references updated and corrected,
conclusions unchanged. Version accepted for publication in Phys. Rev. D,
scheduled for 15 August 200
Structure, mass and stability of galactic disks
In this review I concentrate on three areas related to structure of disks in
spiral galaxies. First I will review the work on structure, kinematics and
dynamics of stellar disks. Next I will review the progress in the area of
flaring of HI layers. These subjects are relevant for the presence of dark
matter and lead to the conclusion that disk are in general not `maximal', have
lower M/L ratios than previously suspected and are locally stable w.r.t.
Toomre's Q criterion for local stability. I will end with a few words on
`truncations' in stellar disks.Comment: Invited review at "Galaxies and their Masks" for Ken Freeman's 70-th
birthday, Sossusvlei, Namibia, April 2010. A version with high-res. figures
is available at
http://www.astro.rug.nl/~vdkruit/jea3/homepage/Namibiachapter.pd
Scalar field "mini--MACHOs": a new explanation for galactic dark matter
We examine the possibility that galactic halos are collisionless ensembles of
scalar field ``massive compact halo objects'' (MACHOs). Using mass constraints
from MACHO microlensing and from theoretical arguments on halos made up of
massive black holes, as well as demanding also that scalar MACHO ensambles of
all scales do not exhibit gravothermal instability (as required by consistency
with observations of LSB galaxies), we obtain the range: m\alt 10^{-7}
M_\odot or 30 M_\odot\alt m\alt 100 M_\odot. The rather narrow mass range of
large MACHOs seems to indicate that the ensambles we are suggesting should be
probably made up of scalar MACHOs in the low mass range (``mini--MACHOs''). The
proposed model allows one to consider a non--baryonic and non--thermal
fundamental nature of dark matter, while at the same time keeping the same
phenomenology of the CDM paradigm.Comment: 5 pages, 1 eps figure. RevTex 4 style. To appear in Physical Review
Fitting the integrated Spectral Energy Distributions of Galaxies
Fitting the spectral energy distributions (SEDs) of galaxies is an almost
universally used technique that has matured significantly in the last decade.
Model predictions and fitting procedures have improved significantly over this
time, attempting to keep up with the vastly increased volume and quality of
available data. We review here the field of SED fitting, describing the
modelling of ultraviolet to infrared galaxy SEDs, the creation of
multiwavelength data sets, and the methods used to fit model SEDs to observed
galaxy data sets. We touch upon the achievements and challenges in the major
ingredients of SED fitting, with a special emphasis on describing the interplay
between the quality of the available data, the quality of the available models,
and the best fitting technique to use in order to obtain a realistic
measurement as well as realistic uncertainties. We conclude that SED fitting
can be used effectively to derive a range of physical properties of galaxies,
such as redshift, stellar masses, star formation rates, dust masses, and
metallicities, with care taken not to over-interpret the available data. Yet
there still exist many issues such as estimating the age of the oldest stars in
a galaxy, finer details ofdust properties and dust-star geometry, and the
influences of poorly understood, luminous stellar types and phases. The
challenge for the coming years will be to improve both the models and the
observational data sets to resolve these uncertainties. The present review will
be made available on an interactive, moderated web page (sedfitting.org), where
the community can access and change the text. The intention is to expand the
text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics &
Space Scienc
A lower bound on the mass of Dark Matter particles
We discuss the bounds on the mass of Dark Matter (DM) particles, coming from
the analysis of DM phase-space distribution in dwarf spheroidal galaxies
(dSphs). After reviewing the existing approaches, we choose two methods to
derive such a bound. The first one depends on the information about the current
phase space distribution of DM particles only, while the second one uses both
the initial and final distributions. We discuss the recent data on dSphs as
well as astronomical uncertainties in relevant parameters. As an application,
we present lower bounds on the mass of DM particles, coming from various dSphs,
using both methods. The model-independent bound holds for any type of fermionic
DM. Stronger, model-dependent bounds are quoted for several DM models (thermal
relics, non-resonantly and resonantly produced sterile neutrinos, etc.). The
latter bounds rely on the assumption that baryonic feedback cannot
significantly increase the maximum of a distribution function of DM particles.
For the scenario in which all the DM is made of sterile neutrinos produced via
non-resonant mixing with the active neutrinos (NRP) this gives m_nrp > 1.7 keV.
Combining these results in their most conservative form with the X-ray bounds
of DM decay lines, we conclude that the NRP scenario remains allowed in a very
narrow parameter window only. This conclusion is independent of the results of
the Lyman-alpha analysis. The DM model in which sterile neutrinos are
resonantly produced in the presence of lepton asymmetry remains viable. Within
the minimal neutrino extension of the Standard Model (the nuMSM), both mass and
the mixing angle of the DM sterile neutrino are bounded from above and below,
which suggests the possibility for its experimental search.Comment: 20 pages, published in JCA
Cosmological Applications of Gravitational Lensing
The last decade has seen an enormous increase of activity in the field of
gravitational lensing, mainly driven by improvements of observational
capabilities. I will review the basics of gravitational lens theory, just
enough to understand the rest of this contribution, and will then concentrate
on several of the main applications in cosmology. Cluster lensing, and weak
lensing, will constitute the main part of this review.Comment: 26 pages, including 2 figures (a third figure can be obtained from
the author by request) gziped and uuencoded postscript file; to be published
in Proceedings of the Laredo Advanced Summer School, Sept. 9
Cosmology with clusters of galaxies
In this Chapter I review the role that galaxy clusters play as tools to
constrain cosmological parameters. I will concentrate mostly on the application
of the mass function of galaxy clusters, while other methods, such as that
based on the baryon fraction, are covered by other Chapters of the book. Since
most of the cosmological applications of galaxy clusters rely on precise
measurements of their masses, a substantial part of my Lectures concentrates on
the different methods that have been applied so far to weight galaxy clusters.
I provide in Section 2 a short introduction to the basics of cosmic structure
formation. In Section 3 I describe the Press--Schechter (PS) formalism to
derive the cosmological mass function, then discussing extensions of the PS
approach and the most recent calibrations from N--body simulations. In Section
4 I review the methods to build samples of galaxy clusters at different
wavelengths. Section 5 is devoted to the discussion of different methods to
derive cluster masses. In Section 6 I describe the cosmological constraints,
which have been obtained so far by tracing the cluster mass function with a
variety of methods. Finally, I describe in Section 7 the future perspectives
for cosmology with galaxy clusters and the challenges for clusters to keep
playing an important role in the era of precision cosmology.Comment: 49 pages, 19 figures, Lectures for 2005 Guillermo Haro Summer School
on Clusters, to appear in "Lecture notes in Physics" (Springer