18 research outputs found
ANTARES: the first undersea neutrino telescope
The ANTARES Neutrino Telescope was completed in May 2008 and is the first
operational Neutrino Telescope in the Mediterranean Sea. The main purpose of
the detector is to perform neutrino astronomy and the apparatus also offers
facilities for marine and Earth sciences. This paper describes the design, the
construction and the installation of the telescope in the deep sea, offshore
from Toulon in France. An illustration of the detector performance is given
A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond
Antarctic and Southern Ocean science is vital to understanding natural variability, the processes
that govern global change and the role of humans in the Earth and climate system. The potential for new
knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic
community came together to ‘scan the horizon’ to identify the highest priority scientific questions that
researchers should aspire to answer in the next two decades and beyond. Wide consultation was a
fundamental principle for the development of a collective, international view of the most important future
directions in Antarctic science. From the many possibilities, the horizon scan identified 80 key scientific
questions through structured debate, discussion, revision and voting. Questions were clustered into seven
topics: i)Antarctic atmosphere and global connections, ii) Southern Ocean and sea ice in a warming world,
iii) ice sheet and sea level, iv) the dynamic Earth, v) life on the precipice, vi) near-Earth space and beyond,
and vii) human presence in Antarctica. Answering the questions identified by the horizon scan will require
innovative experimental designs, novel applications of technology, invention of next-generation field and
laboratory approaches, and expanded observing systems and networks. Unbiased, non-contaminating
procedures will be required to retrieve the requisite air, biota, sediment, rock, ice and water samples.
Sustained year-round access toAntarctica and the Southern Ocean will be essential to increase winter-time
measurements. Improved models are needed that represent Antarctica and the Southern Ocean in the
Earth System, and provide predictions at spatial and temporal resolutions useful for decision making.
A co-ordinated portfolio of cross-disciplinary science, based on new models of international collaboration,
will be essential as no scientist, programme or nation can realize these aspirations alone.Tinker Foundation, Antarctica New Zealand, The New Zealand
Antarctic Research Institute, the Scientific Committee on
Antarctic Research (SCAR), the Council of Managers of
National Antarctic Programs (COMNAP), the Alfred
Wegner Institut, Helmholtz Zentrum für Polar und
Meeresforschung (Germany), and the British Antarctic
Survey (UK).http://journals.cambridge.org/action/displayJournal?jid=ANShb201
Process-resolving Regional Arctic System Model for Advanced Modeling and Prediction of Arctic Climate System
15th Conference on Polar Meteorology and OceanographyThe Regional Arctic System Model (RASM) is a fully coupled limited-domain ice-ocean-atmosphere-land hydrology model. Its domain is pan-Arctic, with the atmosphere and land components configured on a 50-km or 25-km grid. The ocean and sea ice components are configured on rotated sphere meshes with four configuration options: 1/12o (~9.3km) or 1/48o (~2.4km) in the horizontal space and with 45 or 60 vertical layers. As a regional climate model, RASM requires boundary conditions along its lateral boundaries and in the upper atmosphere, which are derived either from global atmospheric reanalyses for simulations of the past to present or from Earth System models (ESMs) for climate projections. In the former case, this allow comparison of RASM results with observations in place and time, which is a unique capability not available in global ESMs. RASM has been developed and used to investigate critical processes controlling the evolution of the Arctic climate system under a diminishing sea ice cover. Several examples of key physical processes and coupling between different model components will be presented, that improve the representation of the past and present Arctic climate system. The impact of such processes and feedbacks will be discussed with regard to improving model physics and reducing biases in the representation of its initial state for prediction of Arctic climate at time scales from synoptic to intra-annual
Six priorities for Antartic soil
No abstract availablehttp://www.nature.com/naturehb201
Reactive nitrogen and sulphate wet deposition at Zeppelin Station, Ny-Ålesund, Svalbard
As a potent fertilizer, reactive nitrogen plays an important role in Arctic ecosystems. Since the Arctic is a nutrient-limited environment, changes in nitrogen deposition can have severe impacts on local ecosystems. To quantify the amount of nitrogen deposited through snow and rain events, precipitation sampling was performed at Zeppelin Station, Svalbard, from November 2009 until May 2011. The samples were analysed for , nss- and concentrations, and the deposition of single precipitation events was calculated using precipitation measurements taken at nearby Ny-Ålesund. The majority of observed events showed concentrations ranging from 0.01 to 0.1 mg L−1 N for and and from 0.02 to 0.3 mg L−1 S for nss-. The majority of calculated depositions ranged from 0.01 to 0.1 mg m−2 N for and and from 0.02 to 0.3 mg m−2 S for nss-. The budget was controlled by strong deposition events, caused by long-lasting precipitation episodes that lasted for several days and which had raised concentrations of nitrogen and sulphur. Three future scenarios of increasing precipitation in the Arctic were considered. The results showed that deposition is mainly controlled by the amount of precipitation, which leads to the conclusion that increased precipitation might cause increases in deposition of the same magnitude