808 research outputs found

    Collapse of the vortex-lattice inductance and shear modulus at the melting transition in untwinned YBa2Cu3O7\rm YBa_2Cu_3O_7

    Full text link
    The complex resistivity ρ^(ω)\hat{\rho}(\omega) of the vortex lattice in an untwinned crystal of 93-K YBa2Cu3O7\rm YBa_2Cu_3O_7 has been measured at frequencies ω/2π\omega/2\pi from 100 kHz to 20 MHz in a 2-Tesla field Hc\bf H\parallel c, using a 4-probe RF transmission technique that enables continuous measurements versus ω\omega and temperature TT. As TT is increased, the inductance Ls(ω)=Imρ^(ω)/ω{\cal L}_s(\omega) ={\rm Im} \hat{\rho}(\omega)/ \omega increases steeply to a cusp at the melting temperature TmT_m, and then undergoes a steep collapse consistent with vanishing of the shear modulus c66c_{66}. We discuss in detail the separation of the vortex-lattice inductance from the `volume' inductance, and other skin-depth effects. To analyze the spectra, we consider a weakly disordered lattice with a low pin density. Close fits are obtained to ρ1(ω)\rho_1(\omega) over 2 decades in ω\omega. Values of the pinning parameter κ\kappa and shear modulus c66c_{66} obtained show that c66c_{66} collapses by over 4 decades at TmT_m, whereas κ\kappa remains finite.Comment: 11 pages, 8 figures, Phys. Rev. B, in pres

    Universal Quantum Computation using Exchange Interactions and Teleportation of Single-Qubit Operations

    Get PDF
    We show how to construct a universal set of quantum logic gates using control over exchange interactions and single- and two-spin measurements only. Single-spin unitary operations are teleported instead of being executed directly, thus eliminating a major difficulty in the construction of several of the most promising proposals for solid-state quantum computation, such as spin-coupled quantum dots, donor-atom nuclear spins in silicon, and electrons on helium. Contrary to previous proposals dealing with this difficulty, our scheme requires no encoding redundancy. We also discuss an application to superconducting phase qubits.Comment: 4.5 pages, including 2 figure

    Entanglement and Quantum Phase Transitions via Adiabatic Quantum Computation

    Full text link
    For a finite XY chain and a finite two-dimensional Ising lattice, it is shown that the paramagnetic ground state is adiabatically transformed to the GHZ state in the ferromagnetic phase by slowly turning on the magnetic field. The fidelity between the GHZ state and an adiabatically evolved state shows a feature of the quantum phase transition.Comment: Revise

    Encoded Recoupling and Decoupling: An Alternative to Quantum Error Correcting Codes, Applied to Trapped Ion Quantum Computation

    Get PDF
    A recently developed theory for eliminating decoherence and design constraints in quantum computers, ``encoded recoupling and decoupling'', is shown to be fully compatible with a promising proposal for an architecture enabling scalable ion-trap quantum computation [D. Kielpinski et al., Nature 417, 709 (2002)]. Logical qubits are encoded into pairs of ions. Logic gates are implemented using the Sorensen-Molmer (SM) scheme applied to pairs of ions at a time. The encoding offers continuous protection against collective dephasing. Decoupling pulses, that are also implemented using the SM scheme directly to the encoded qubits, are capable of further reducing various other sources of qubit decoherence, such as due to differential dephasing and due to decohered vibrational modes. The feasibility of using the relatively slow SM pulses in a decoupling scheme quenching the latter source of decoherence follows from the observed 1/f spectrum of the vibrational bath.Comment: 12 pages, no figure

    Neutrino masses and mixing with seesaw mechanism and universal breaking of extended democracy

    Get PDF
    In the framework of a minimal extension of the SM, where the only additional fields are three right-handed neutrinos, we suggest that the charged lepton, the Dirac neutrino and the right-handed Majorana neutrino mass matrices are all, to leading approximation, proportional to the democratic matrix. With the further assumption that the breaking of this extended democracy is universal for all leptonic mass matrices, a large mixing in the 2-3 sector can be obtained and is linked to the seesaw mechanism, together with the existence of a strong hierarchy in the masses of right-handed neutrinos. The structure of the resulting effective mass matrix of light neutrinos is stable against the RGE evolution, and a good fit to all solar and atmospheric neutrino data is obtained.Comment: LaTeX, 17 pages, 2 eps figures. A section on RGE evolution and a few references added; minor typos correcte

    Complete population transfer in a degenerate 3-level atom

    Full text link
    We find conditions required to achieve complete population transfer, via coherent population trapping, from an initial state to a designated final state at a designated time in a degenerate 3-level atom, where transitions are caused by an external interaction. Complete population transfer from an initially occupied state 1 to a designated state 2 occurs under two conditions. First, there is a constraint on the ratios of the transition matrix elements of the external interaction. Second, there is a constraint on the action integral over the interaction, or "area", corresponding to the phase shift induced by the external interaction. Both conditions may be expressed in terms of simple odd integers.Comment: 22 pages, 4 figure

    Experimental Implementation of the Quantum Random-Walk Algorithm

    Full text link
    The quantum random walk is a possible approach to construct new quantum algorithms. Several groups have investigated the quantum random walk and experimental schemes were proposed. In this paper we present the experimental implementation of the quantum random walk algorithm on a nuclear magnetic resonance quantum computer. We observe that the quantum walk is in sharp contrast to its classical counterpart. In particular, the properties of the quantum walk strongly depends on the quantum entanglement.Comment: 5 pages, 4 figures, published versio

    Thermopower and thermal conductivity of superconducting perovskite MgCNi3MgCNi_3

    Full text link
    The thermopower and thermal conductivity of superconducting perovskite MgCNi3MgCNi_3 (TcT_c \approx 8 K) have been studied. The thermopower is negative from room temperature to 10 K. Combining with the negative Hall coefficient reported previously, the negative thermopower definetly indicates that the carrier in MgCNi3MgCNi_3 is electron-type. The nonlinear temperature dependence of thermopower below 150 K is explained by the electron-phonon interaction renormalization effects. The thermal conductivity is of the order for intermetallics, larger than that of borocarbides and smaller than MgB2MgB_2. In the normal state, the electronic contribution to the total thermal conductivity is slightly larger than the lattice contribution. The transverse magnetoresistance of MgCNi3MgCNi_3 is also measured. It is found that the classical Kohler's rule is valid above 50 K. An electronic crossover occures at T50KT^* \sim 50 K, resulting in the abnormal behavior of resistivity, thermopower, and magnetoresistance below 50 K.Comment: Revised on 12 September 2001, Phys. Rev. B in pres
    corecore