285 research outputs found

    Charged Dilaton Black Holes with a Cosmological Constant

    Get PDF
    The properties of static spherically symmetric black holes, which are either electrically or magnetically charged, and which are coupled to the dilaton in the presence of a cosmological constant, are considered. It is shown that such solutions do not exist if the cosmological constant is positive (in arbitrary spacetime dimension >= 4). However, asymptotically anti-de Sitter black hole solutions with a single horizon do exist if the cosmological constant is negative. These solutions are studied numerically in four dimensions and the thermodynamic properties of the solutions are derived. The extreme solutions are found to have zero entropy and infinite temperature for all non-zero values of the dilaton coupling constant.Comment: 12 pages, epsf, phyzzx, 4 in-text figures incl. (minor typos fixed, 1 reference added

    Wavy Strings: Black or Bright?

    Get PDF
    Recent developments in string theory have brought forth a considerable interest in time-dependent hair on extended objects. This novel new hair is typically characterized by a wave profile along the horizon and angular momentum quantum numbers l,ml,m in the transverse space. In this work, we present an extensive treatment of such oscillating black objects, focusing on their geometric properties. We first give a theorem of purely geometric nature, stating that such wavy hair cannot be detected by any scalar invariant built out of the curvature and/or matter fields. However, we show that the tidal forces detected by an infalling observer diverge at the `horizon' of a black string superposed with a vibration in any mode with l1l \ge 1. The same argument applied to longitudinal (l=0l=0) waves detects only finite tidal forces. We also provide an example with a manifestly smooth metric, proving that at least a certain class of these longitudinal waves have regular horizons.Comment: 45 pages, latex, no figure

    Sequences of Bubbles and Holes: New Phases of Kaluza-Klein Black Holes

    Full text link
    We construct and analyze a large class of exact five- and six-dimensional regular and static solutions of the vacuum Einstein equations. These solutions describe sequences of Kaluza-Klein bubbles and black holes, placed alternately so that the black holes are held apart by the bubbles. Asymptotically the solutions are Minkowski-space times a circle, i.e. Kaluza-Klein space, so they are part of the (\mu,n) phase diagram introduced in hep-th/0309116. In particular, they occupy a hitherto unexplored region of the phase diagram, since their relative tension exceeds that of the uniform black string. The solutions contain bubbles and black holes of various topologies, including six-dimensional black holes with ring topology S^3 x S^1 and tuboid topology S^2 x S^1 x S^1. The bubbles support the S^1's of the horizons against gravitational collapse. We find two maps between solutions, one that relates five- and six-dimensional solutions, and another that relates solutions in the same dimension by interchanging bubbles and black holes. To illustrate the richness of the phase structure and the non-uniqueness in the (\mu,n) phase diagram, we consider in detail particular examples of the general class of solutions.Comment: 71 pages, 22 figures, v2: Typos fixed, comment added in sec. 5.

    A Charged Rotating Black Ring

    Full text link
    We construct a supergravity solution describing a charged rotating black ring with S^2xS^1 horizon in a five dimensional asymptotically flat spacetime. In the neutral limit the solution is the rotating black ring recently found by Emparan and Reall. We determine the exact value of the lower bound on J^2/M^3, where J is the angular momentum and M the mass; the black ring saturating this bound has maximum entropy for the given mass. The charged black ring is characterized by mass M, angular momentum J, and electric charge Q, and it also carries local fundamental string charge. The electric charge distributed uniformly along the ring helps support the ring against its gravitational self-attraction, so that J^2/M^3 can be made arbitrarily small while Q/M remains finite. The charged black ring has an extremal limit in which the horizon coincides with the singularity.Comment: 25 pages, 1 figur

    N=3 Warped Compactifications

    Get PDF
    Orientifolds with three-form flux provide some of the simplest string examples of warped compactification. In this paper we show that some models of this type have the unusual feature of D=4, N=3 spacetime supersymmetry. We discuss their construction and low energy physics. Although the local form of the moduli space is fully determined by supersymmetry, to find its global form requires a careful study of the BPS spectrum.Comment: 27 pages, v2: 32pp., RevTeX4, fixed factors, slightly improved sections 3D and 4B, v3: added referenc

    New nonuniform black string solutions

    Full text link
    We present nonuniform vacuum black strings in five and six spacetime dimensions. The conserved charges and the action of these solutions are computed by employing a quasilocal formalism. We find qualitative agreement of the physical properties of nonuniform black strings in five and six dimensions. Our results offer further evidence that the black hole and the black string branches merge at a topology changing transition. We generate black string solutions of the Einstein-Maxwell-dilaton theory by using a Harrison transformation. We argue that the basic features of these solutions can be derived from those of the vacuum black string configurations.Comment: 30 pages, 12 figures; v2: more details on numerical method, references added; v3: references added, minor revisions, version accepted by journa

    Exact Primordial Black Strings in Four Dimensions

    Full text link
    A solution of effective string theory in four dimensions is presented which admits interpretation of a rotating black cosmic string. It is constructed by tensoring the three dimensional black hole, extended with the Kalb-Ramond axion, with a flat direction. The physical interpretation of the solution is discussed, with special attention on the axion, which is found to play a role very similar to a Higgs field. Finally, it is pointed out that the solution represents an exact WZWN σ\sigma model on the string world sheet, to all orders in the inverse string tension α\alpha'.Comment: 11 pages plain TeX, Univ. of Alberta preprint Alberta-THY-14-199

    Introduction to M Theory and AdS/CFT Duality

    Get PDF
    An introductory survey of some of the developments that have taken place in superstring theory in the past few years is presented. The main focus is on three particular dualities. The first one is the appearance of an 11th dimension in the strong coupling limit of the type IIA theory, which give rise to M theory. The second one is the duality between the type IIB theory compactified on a circle and M theory on a two-torus. The final topic is an introduction to the recently proposed duality between superstring theory or M theory on certain anti de Sitter space backgrounds and conformally invariant quantum field theories.Comment: 26 pages; To be published in the Proceedings of a conference held in Corfu, Greece in September 1998. v2: reference adde

    Aspects of Large N Gauge Theory Dynamics as Seen by String Theory

    Get PDF
    In this paper we explore some of the features of large N supersymmetric and nonsupersymmetric gauge theories using Maldacena's duality conjectures. We shall show that the resulting strong coupling behavior of the gauge theories is consistent with our qualitative expectations of these theories. Some of these consistency checks are highly nontrivial and give additional evidence for the validity of the proposed dualities.Comment: 31 pages, LaTeX, 11 eps figures, typos correcte

    Exactly solvable model of superstring in Ramond-Ramond plane wave background

    Full text link
    We describe in detail the solution of type IIB superstring theory in the maximally supersymmetric plane-wave background with constant null Ramond-Ramond 5-form field strength. The corresponding light-cone Green-Schwarz action found in hep-th/0112044 is quadratic in both bosonic and fermionic coordinates. We find the spectrum of the light-cone Hamiltonian and the string representation of the supersymmetry algebra. The superstring Hamiltonian has a ``harmonic-oscillator'' form in both the string-oscillator and the zero-mode parts and thus has discrete spectrum in all 8 transverse directions. We analyze the structure of the zero-mode sector of the theory, establishing the precise correspondence between the lowest-lying ``massless'' string states and the type IIB supergravity fluctuation modes in the plane-wave background. The zero-mode spectrum has certain similarity to the supergravity spectrum in AdS_5 x S^5 of which the plane-wave background is a special limit. We also compare the plane-wave string spectrum with expected form of the light-cone gauge spectrum of superstring in AdS_5 x S^5.Comment: 33 pages, latex. v4: minor sign corrections in (1.5) and (3.62), to appear in PR
    corecore