285 research outputs found
Charged Dilaton Black Holes with a Cosmological Constant
The properties of static spherically symmetric black holes, which are either
electrically or magnetically charged, and which are coupled to the dilaton in
the presence of a cosmological constant, are considered. It is shown that such
solutions do not exist if the cosmological constant is positive (in arbitrary
spacetime dimension >= 4). However, asymptotically anti-de Sitter black hole
solutions with a single horizon do exist if the cosmological constant is
negative. These solutions are studied numerically in four dimensions and the
thermodynamic properties of the solutions are derived. The extreme solutions
are found to have zero entropy and infinite temperature for all non-zero values
of the dilaton coupling constant.Comment: 12 pages, epsf, phyzzx, 4 in-text figures incl. (minor typos fixed, 1
reference added
Wavy Strings: Black or Bright?
Recent developments in string theory have brought forth a considerable
interest in time-dependent hair on extended objects. This novel new hair is
typically characterized by a wave profile along the horizon and angular
momentum quantum numbers in the transverse space. In this work, we
present an extensive treatment of such oscillating black objects, focusing on
their geometric properties. We first give a theorem of purely geometric nature,
stating that such wavy hair cannot be detected by any scalar invariant built
out of the curvature and/or matter fields. However, we show that the tidal
forces detected by an infalling observer diverge at the `horizon' of a black
string superposed with a vibration in any mode with . The same
argument applied to longitudinal () waves detects only finite tidal
forces. We also provide an example with a manifestly smooth metric, proving
that at least a certain class of these longitudinal waves have regular
horizons.Comment: 45 pages, latex, no figure
Sequences of Bubbles and Holes: New Phases of Kaluza-Klein Black Holes
We construct and analyze a large class of exact five- and six-dimensional
regular and static solutions of the vacuum Einstein equations. These solutions
describe sequences of Kaluza-Klein bubbles and black holes, placed alternately
so that the black holes are held apart by the bubbles. Asymptotically the
solutions are Minkowski-space times a circle, i.e. Kaluza-Klein space, so they
are part of the (\mu,n) phase diagram introduced in hep-th/0309116. In
particular, they occupy a hitherto unexplored region of the phase diagram,
since their relative tension exceeds that of the uniform black string. The
solutions contain bubbles and black holes of various topologies, including
six-dimensional black holes with ring topology S^3 x S^1 and tuboid topology
S^2 x S^1 x S^1. The bubbles support the S^1's of the horizons against
gravitational collapse. We find two maps between solutions, one that relates
five- and six-dimensional solutions, and another that relates solutions in the
same dimension by interchanging bubbles and black holes. To illustrate the
richness of the phase structure and the non-uniqueness in the (\mu,n) phase
diagram, we consider in detail particular examples of the general class of
solutions.Comment: 71 pages, 22 figures, v2: Typos fixed, comment added in sec. 5.
A Charged Rotating Black Ring
We construct a supergravity solution describing a charged rotating black ring
with S^2xS^1 horizon in a five dimensional asymptotically flat spacetime. In
the neutral limit the solution is the rotating black ring recently found by
Emparan and Reall. We determine the exact value of the lower bound on J^2/M^3,
where J is the angular momentum and M the mass; the black ring saturating this
bound has maximum entropy for the given mass. The charged black ring is
characterized by mass M, angular momentum J, and electric charge Q, and it also
carries local fundamental string charge. The electric charge distributed
uniformly along the ring helps support the ring against its gravitational
self-attraction, so that J^2/M^3 can be made arbitrarily small while Q/M
remains finite. The charged black ring has an extremal limit in which the
horizon coincides with the singularity.Comment: 25 pages, 1 figur
N=3 Warped Compactifications
Orientifolds with three-form flux provide some of the simplest string
examples of warped compactification. In this paper we show that some models of
this type have the unusual feature of D=4, N=3 spacetime supersymmetry. We
discuss their construction and low energy physics. Although the local form of
the moduli space is fully determined by supersymmetry, to find its global form
requires a careful study of the BPS spectrum.Comment: 27 pages, v2: 32pp., RevTeX4, fixed factors, slightly improved
sections 3D and 4B, v3: added referenc
New nonuniform black string solutions
We present nonuniform vacuum black strings in five and six spacetime
dimensions. The conserved charges and the action of these solutions are
computed by employing a quasilocal formalism. We find qualitative agreement of
the physical properties of nonuniform black strings in five and six dimensions.
Our results offer further evidence that the black hole and the black string
branches merge at a topology changing transition. We generate black string
solutions of the Einstein-Maxwell-dilaton theory by using a Harrison
transformation. We argue that the basic features of these solutions can be
derived from those of the vacuum black string configurations.Comment: 30 pages, 12 figures; v2: more details on numerical method,
references added; v3: references added, minor revisions, version accepted by
journa
Exact Primordial Black Strings in Four Dimensions
A solution of effective string theory in four dimensions is presented which
admits interpretation of a rotating black cosmic string. It is constructed by
tensoring the three dimensional black hole, extended with the Kalb-Ramond
axion, with a flat direction. The physical interpretation of the solution is
discussed, with special attention on the axion, which is found to play a role
very similar to a Higgs field. Finally, it is pointed out that the solution
represents an exact WZWN model on the string world sheet, to all
orders in the inverse string tension .Comment: 11 pages plain TeX, Univ. of Alberta preprint Alberta-THY-14-199
Introduction to M Theory and AdS/CFT Duality
An introductory survey of some of the developments that have taken place in
superstring theory in the past few years is presented. The main focus is on
three particular dualities. The first one is the appearance of an 11th
dimension in the strong coupling limit of the type IIA theory, which give rise
to M theory. The second one is the duality between the type IIB theory
compactified on a circle and M theory on a two-torus. The final topic is an
introduction to the recently proposed duality between superstring theory or M
theory on certain anti de Sitter space backgrounds and conformally invariant
quantum field theories.Comment: 26 pages; To be published in the Proceedings of a conference held in
Corfu, Greece in September 1998. v2: reference adde
Aspects of Large N Gauge Theory Dynamics as Seen by String Theory
In this paper we explore some of the features of large N supersymmetric and
nonsupersymmetric gauge theories using Maldacena's duality conjectures. We
shall show that the resulting strong coupling behavior of the gauge theories is
consistent with our qualitative expectations of these theories. Some of these
consistency checks are highly nontrivial and give additional evidence for the
validity of the proposed dualities.Comment: 31 pages, LaTeX, 11 eps figures, typos correcte
Exactly solvable model of superstring in Ramond-Ramond plane wave background
We describe in detail the solution of type IIB superstring theory in the
maximally supersymmetric plane-wave background with constant null Ramond-Ramond
5-form field strength. The corresponding light-cone Green-Schwarz action found
in hep-th/0112044 is quadratic in both bosonic and fermionic coordinates. We
find the spectrum of the light-cone Hamiltonian and the string representation
of the supersymmetry algebra. The superstring Hamiltonian has a
``harmonic-oscillator'' form in both the string-oscillator and the zero-mode
parts and thus has discrete spectrum in all 8 transverse directions. We analyze
the structure of the zero-mode sector of the theory, establishing the precise
correspondence between the lowest-lying ``massless'' string states and the type
IIB supergravity fluctuation modes in the plane-wave background. The zero-mode
spectrum has certain similarity to the supergravity spectrum in AdS_5 x S^5 of
which the plane-wave background is a special limit. We also compare the
plane-wave string spectrum with expected form of the light-cone gauge spectrum
of superstring in AdS_5 x S^5.Comment: 33 pages, latex. v4: minor sign corrections in (1.5) and (3.62), to
appear in PR
- …