1,095 research outputs found
Ultrafast carrier capture at room temperature in InAs/InP quantum dots emitting in the 1.55 µm wavelength region
The energy and excitation density dependence of the carrier dynamics in self-assembled InAs/InP quantum dots sQDsd, emitting in the 1.55 µm wavelength region, is investigated by means of time-resolved pump-probe differential reflection spectroscopy at room temperature. We observe ultrafast carrier capture and subsequential carrier relaxation into the QD ground state within 2.5 ps. The carrier lifetime in the QDs strongly depends on the QD optical transition energy within the QD ensemble as well as the carrier density, and ranges from 560 up to 2600 ps
Density pertubation of unparticle dark matter in the flat Universe
The unparticle has been suggested as a candidate of dark matter. We
investigated the growth rate of the density perturbation for the unparticle
dark matter in the flat Universe. First, we consider the model in which
unparticle is the sole dark matter and find that the growth factor can be
approximated well by , where is
the equation of state of unparticle. Our results show that the presence of
modifies the behavior of the growth factor . For the second model
where unparticle co-exists with cold dark matter, the growth factor has a new
approximation and
is a function of . Thus the growth factor of unparticle is quite
different from that of usual dark matter. These information can help us know
more about unparticle and the early evolution of the Universe.Comment: 6pages, 4 figures, accepted for publication in Eur. Phys. J.
Preferential etching by flowing oxygen on the (100) surfaces of HPHT single-crystal diamond
Application of diamond is determined by its oxidation behaviour in some measure. Oxidation process of single-crystal diamond prepared under high pressure and high temperature has been studied by the thermal analysis, scanning electron microscope and Raman spectrometer. The result of a simultaneous thermal analysis indicates that single-crystal diamond is oxidized at ~ 818 °C at a heating rate of 5°C/min in the flowing oxygen. Based on the data of the thermal analysis at different heating rates, the activation energy is calculated by the Kissinger method. A weight loss rate increases with the rising heat treatment temperature from 600 to 800°C. After the oxidation at 800 °C, etch pits emerge on the {100} surfaces of single-crystal diamond, while the {111} surfaces are smooth. Shapes of the etch pits on the {100} surfaces are inverted pyramidal hollows, with edges direction parallel to the direction.Застосування алмазу в якійсь мірі визначається його поведінкою при окисленні. За допомогою термічного аналізу, скануючої електронної мікроскопії і спектроскопії комбінаційного розсіювання світла вивчено процес окислення монокристалічного алмазу, отриманого при високому тиску і високій температурі. Одночасний термічний аналіз показав, що монокристалічний алмаз окислюється при ~ 818 °С при швидкості нагріву 5 °С/хв в потоці кисню. На основі даних термічного аналізу при різних швидкостях нагрівання розраховано енергію активації за методом Кіссінджера. Швидкість втрати ваги зростає з підвищенням температури термообробки від 600 до 800 °C. Після окислення при температурі 800 °С ямки травлення з’являються на поверхні {100} монокристалічного алмазу, в той час як поверхні {111} гладкі. Форма ямок на поверхнях {100} – перевернуті пірамідальні западини з ребрами в напрямку паралельному .Применение алмаза в какой-то мере определяется его поведением при окислении. С помощью термического анализа, сканирующей электронной микроскопии и спектроскопии комбинационного рассеяния света изучен процесс окисления монокристаллического алмаза, полученного при высоком давлении и высокой температуре. Одновременный термический анализ показывает, что монокристаллический алмаз окисляется при ~ 818 °С при скорости нагрева 5 °С/мин в потоке кислорода. На основе данных термического анализа при различных скоростях нагрева рассчитана энергия активации по методу Киссинджера. Скорость потери веса возрастает с повышением температуры термообработки от 600 до 800 °C. После окисления при температуре 800 °С ямки травления появляются на поверхности {100} монокристаллического алмаза, в то время как поверхности {111} гладкие. Форма ямок на поверхностях {100} – перевернутые пирамидальные впадины с ребрами в направлении параллельном
Comparison of [(11)C]choline positron emission tomography with T2- and diffusion-weighted magnetic resonance imaging for delineating malignant intraprostatic lesions
Purpose: To compare the accuracy of ¹¹C-choline (CHOL) positron emission tomography (PET) with the combination of T2-weighted (T2W) and diffusion-weighted (DW) magnetic resonance imaging (MRI) for delineating malignant intraprostatic lesions (IPLs) for guiding focal therapies and to investigate factors predicting the accuracy of CHOL-PET. Methods and Materials: This study included 21 patients who underwent CHOL-PET and T2W-/DW-MRI prior to radical prostatectomy. Two observers manually delineated IPL contours for each scan, and automatic IPL contours were generated on CHOL-PET based on varying proportions of the maximum standardized uptake value (SUV). IPLs identified on prostatectomy specimens defined the reference standard contours. The imaging-based contours were compared with the reference standard contours using Dice similarity coefficient (DSC), sensitivity and specificity. Factors that could potentially predict the DSC of the best contouring method were analyzed using linear models. Results: The best automatic contouring method, SUV60, had similar correlations (DSC 0.59) with the manual PET contours (DSC 0.52, P=0.127) and significantly better correlations than the manual MRI contours (DSC 0.37, P<0.001). The sensitivity and specificity values were 72% and 71% for SUV60; 53% and 86% for PET manual contouring; and 28% and 92% for MRI manual contouring. The tumor volume and transition zone pattern could independently predict the accuracy of CHOL-PET. Conclusions: CHOL-PET is superior to the combination of T2W- and DW-MRI for delineating IPLs. The accuracy of CHOL-PET is insufficient for gland-sparing focal therapies, 3 however may be accurate enough for focal boost therapies. The transition zone pattern is a new classification that may predict for how well CHOL-PET delineates IPLs.Joe H. Chang, Daryl Lim Joon, Ian D. Davis, Sze Ting Lee, Chee-Yan Hiew, Stephen Esler, Sylvia J. Gong, Morikatsu Wada, David Clouston, Richard O'Sullivan, Yin P. Goh, Damien Bolton, Andrew M. Scott, Vincent Kho
Energy Conditions in Modified Gravity with Non-minimal Coupling to Matter
In this paper we study a model of modified gravity with non-minimal coupling
between a general function of the Gauss-Bonnet invariant, , and matter
Lagrangian from the point of view of the energy conditions. Such model has been
introduced in Ref. [21] for description of early inflation and late-time cosmic
acceleration. We present the suitable energy conditions for the above mentioned
model and then, we use the estimated values of the Hubble, deceleration and
jerk parameters to apply the obtained energy conditions to the specific class
of modified Gauss-Bonnet models.Comment: 12 pages, no figur, Accepted for publication in Astrophysics and
Space Scienc
Cloning of the gene and characterization of the enzymatic properties of the monomeric alkaline phosphatase (PhoX) from Pasteurella multocida strain X-73
We have identified a new phoX gene encoding the monomeric alkaline phosphatase from Pasteurella multocida X-73. This gene was not found in the published genome sequence of Pasteurella multocida pm70. Characterization of the recombinant PhoX of Pasteurella multocida X-73 showed that it is a monomeric enzyme, activated by Ca2+ and possibly secreted by the Tat pathway. These features distinguish phosphatases of the PhoX family from those of the PhoA family. All proteins of the PhoX family were found to contain a conserved motif that shares significant sequence homology with the calcium-binding site of a phosphotriesterase known as diisopropylfluorophosphatase. Site-directed mutagenesis revealed that D527 of PhoX might be the ligand bound to the catalytic calcium. This is the first report on identification of homologous sequences between PhoX and the phosphotriesterase and on the potential calcium-binding site of PhoX
Spin, charge and orbital ordering in ferrimagnetic insulator YBaMnO
The oxygen-deficient (double) perovskite YBaMnO, containing
corner-linked MnO square pyramids, is found to exhibit ferrimagnetic
ordering in its ground state. In the present work we report
generalized-gradient-corrected, relativistic first-principles full-potential
density-functional calculations performed on YBaMnO in the nonmagnetic,
ferromagnetic and ferrimagnetic states. The charge, orbital and spin orderings
are explained with site-, angular momentum- and orbital-projected density of
states, charge-density plots, electronic structure and total energy studies.
YBaMnO is found to stabilize in a G-type ferrimagnetic state in
accordance with experimental results. The experimentally observed insulating
behavior appears only when we include ferrimagnetic ordering in our
calculation. We observed significant optical anisotropy in this material
originating from the combined effect of ferrimagnetic ordering and crystal
field splitting. In order to gain knowledge about the presence of different
valence states for Mn in YBaMnO we have calculated -edge x-ray
absorption near-edge spectra for the Mn and O atoms. The presence of the
different valence states for Mn is clearly established from the x-ray
absorption near-edge spectra, hyperfine field parameters and the magnetic
properties study. Among the experimentally proposed structures, the recently
reported description based on 4/ is found to represent the stable
structure
Kaluza-Klein Cosmology With Modified Holographic Dark Energy
We investigate the compact Kaluza-Klein cosmology in which modified
holographic dark energy is interacting with dark matter. Using this scenario,
we evaluate equation of state parameter as well as equation of evolution of the
modified holographic dark energy. Further, it is shown that the generalized
second law of thermodynamics holds without any constraint.Comment: 13 pages, accepted for publication in Gen. Relativ. Gravi
Correlations between the peak flux density and the position angle of inner-jet in three blazars
We aim to investigate the relation between the long-term flux density and the
position angle (PA) evolution of inner-jet in blazars. We have carried out the
elliptic Gaussian model-fit to the `core' of 50 blazars from 15 GHz VLBA data,
and analyzed the variability properties of three blazars from the model-fit
results. Diverse correlations between the long-term peak flux density and the
PA evolution of the major axis of the `core' have been found in 20% of
the 50 sources. Of them, three typical blazars have been analyzed, which also
show quasi-periodic flux variations of a few years (T). The correlation between
the peak flux density and the PA of inner-jet is positive for S5~0716+714, and
negative for S4~1807+698. The two sources cannot be explained with the
ballistic jet models, the non-ballistic models have been analyzed to explain
the two sub-luminal blazars. A correlation between the peak flux density and
the PA (with a T/4 time lag) of inner-jet is found in [HB89]~1823+568, this
correlation can be explained with a ballistic precession jet model. All the
explanations are based mainly on the geometric beaming effect; physical flux
density variations from the jet base would be considered for more complicated
situations in future, which could account for the no or less significance of
the correlation between the peak flux density and the PA of inner-jet in the
majority blazars of our sample.Comment: 6 pages, 7 figures, accepted for publication in Astrophysics and
Space Scienc
- …