4 research outputs found
Affective tutoring systems: Enhancing e-learning with the emotional awareness of a human tutor
This paper introduces the field of affective computing, and the benefits that can be realized by enhancing e-learning applications with the ability to detect and respond to emotions experienced by the learner. Affective computing has potential benefits for all areas of computing where the computer replaces or mediates face to face communication. The particular relevance of affective computing to e-learning, due to the complex interplay between emotions and the learning process, is considered along with the need for new theories of learning that incorporate affect. Some of the potential means for inferring users’ affective state are also reviewed. These can be broadly categorized into methods that involve the user’s input, and methods that acquire the information independent of any user input. This latter category is of particular interest as these approaches have the potential for more natural and unobtrusive implementation, and it includes techniques such as analysis of vocal patterns, facial expressions or physiological state. The paper concludes with a review of prominent affective tutoring systems and promotes future directions for e-learning that capitalize on the strengths of affective computing
The application of affective computing technology to e-learning
This chapter discusses the domain of affective computing and reviews the area of affective tutoring systems: e-learning applications that possess the ability to detect and appropriately respond to the affective state of the learner. A significant proportion of human communication is non-verbal or implicit, and the communication of affective state provides valuable context and insights. Computers are for all intents and purposes blind to this form of communication, creating what has been described as an “affective gap.” Affective computing aims to eliminate this gap and to foster the development of a new generation of computer interfaces that emulate a more natural human-human interaction paradigm. The domain of learning is considered to be of particular note due to the complex interplay between emotions and learning. This is discussed in this chapter along with the need for new theories of learning that incorporate affect. Next, the more commonly applicable means for inferring affective state are identified and discussed. These can be broadly categorized into methods that involve the user’s input and methods that acquire the information independent of any user input. This latter category is of interest as these approaches have the potential for more natural and unobtrusive implementation, and it includes techniques such as analysis of vocal patterns, facial expressions, and physiological state. The chapter concludes with a review of prominent affective tutoring systems in current research and promotes future directions for e-learning that capitalize on the strengths of affective computing