1,402 research outputs found

    A Systematic Electromagnetic-Circuit Method for EMI Analysis of Coupled Interconnects on Dispersive Dielectrics

    Get PDF
    published_or_final_versio

    PMS58 Burden of Disease in Patients with Diagnosed Rheumatoid Arthritis in Brazil: Results from 2011 National Health and Wellness Survey (NHWS)

    Get PDF

    Image-based 3D Scene Reconstruction and Rescue Simulation Framework for Railway Accidents

    Get PDF
    Although the railway transport is regarded as a relatively safe transportation tool, many railway accidents have still happened worldwide. In this research, an image-based 3D scene reconstruction framework was proposed to help railway accident emergency rescues. Based on the improved constrained non-linear least square optimization, the framework can automatically model the accident scene with only one panorama in a short time. We embedded the self-developed global terrain module into the commercial visualization and physics engine, which makes the commercial engine can be used to render the static scene at anywhere and simulate the dynamic rescue process respectively. In addition, a Head Mounted Device (HMD) was integrated into this framework to allow users to verify their rescue plan and review previous railway accidents in an immersive environment

    Aflibercept in the Treatment of Metastatic Colorectal Cancer

    Get PDF
    Colorectal cancer is the third most common cancer in the US. In recent decades, an improved understanding of the role of the angiogenesis pathway in colorectal cancer has led to advancements in treatment. Bevacizumab has been shown to improve the progression-free survival and overall survival when combined with cytotoxic chemotherapy in patients with metastatic colorectal cancer, and at present is the only antiangiogenesis agent approved for the treatment of this cancer. Aflibercept is a novel angiogenesis-targeting agent, and has demonstrated efficacy in treating metastatic colorectal cancer in a recent randomized Phase III trial. Here we review the role of angiogenesis in the tumorigenesis of colorectal cancer, strategies for targeting angiogenesis, and the clinical development of aflibercept

    Tractable non-local correlation density functionals for flat surfaces and slabs

    Full text link
    A systematic approach for the construction of a density functional for van der Waals interactions that also accounts for saturation effects is described, i.e. one that is applicable at short distances. A very efficient method to calculate the resulting expressions in the case of flat surfaces, a method leading to an order reduction in computational complexity, is presented. Results for the interaction of two parallel jellium slabs are shown to agree with those of a recent RPA calculation (J.F. Dobson and J. Wang, Phys. Rev. Lett. 82, 2123 1999). The method is easy to use; its input consists of the electron density of the system, and we show that it can be successfully approximated by the electron densities of the interacting fragments. Results for the surface correlation energy of jellium compare very well with those of other studies. The correlation-interaction energy between two parallel jellia is calculated for all separations d, and substantial saturation effects are predicted.Comment: 10 pages, 6 figure

    Higher Twist Contributions To R-Hadron Phenomenology In The Light Gluino Scenario

    Get PDF
    The open light gluino window allows non-trivial higher twist gluino contributions to the proton wave function. Using a two-component model originally developed for charm hadroproduction, higher twist intrinsic gluino contributions to final state R-hadron formation are shown to enhance leading twist production in the forward xFx_{F} region. We calculate R-hadron production at plab=800p_{\rm{lab}}=800 GeV in pp, pBe, and pCu interactions with light gluino masses of 1.2, 1.5, 3.5, and 5.0 GeV.Comment: 22 pages, 10 figures, revte

    Anisotropic Scaling in Threshold Critical Dynamics of Driven Directed Lines

    Full text link
    The dynamical critical behavior of a single directed line driven in a random medium near the depinning threshold is studied both analytically (by renormalization group) and numerically, in the context of a Flux Line in a Type-II superconductor with a bulk current J⃗\vec J. In the absence of transverse fluctuations, the system reduces to recently studied models of interface depinning. In most cases, the presence of transverse fluctuations are found not to influence the critical exponents that describe longitudinal correlations. For a manifold with d=4−ϵd=4-\epsilon internal dimensions, longitudinal fluctuations in an isotropic medium are described by a roughness exponent ζ∥=ϵ/3\zeta_\parallel=\epsilon/3 to all orders in ϵ\epsilon, and a dynamical exponent z∥=2−2ϵ/9+O(ϵ2)z_\parallel=2-2\epsilon/9+O(\epsilon^2). Transverse fluctuations have a distinct and smaller roughness exponent ζ⊥=ζ∥−d/2\zeta_\perp=\zeta_\parallel-d/2 for an isotropic medium. Furthermore, their relaxation is much slower, characterized by a dynamical exponent z⊥=z∥+1/νz_\perp=z_\parallel+1/\nu, where ν=1/(2−ζ∥)\nu=1/(2-\zeta_\parallel) is the correlation length exponent. The predicted exponents agree well with numerical results for a flux line in three dimensions. As in the case of interface depinning models, anisotropy leads to additional universality classes. A nonzero Hall angle, which has no analogue in the interface models, also affects the critical behavior.Comment: 26 pages, 8 Postscript figures packed together with RevTeX 3.0 manuscript using uufiles, uses multicol.sty and epsf.sty, e-mail [email protected] in case of problem

    Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments

    Full text link
    Crystal scintillators provide potential merits for the pursuit of low-energy low-background experiments. A CsI(Tl) scintillating crystal detector is being constructed to study low-energy neutrino physics at a nuclear reactor, while projects are underway to adopt this technique for dark matter searches. The choice of the geometrical parameters of the crystal modules, as well as the optimization of the read-out scheme, are the results of an R&D program. Crystals with 40 cm in length were developed. The detector requirements and the achieved performance of the prototypes are presented. Future prospects for this technique are discussed.Comment: 32 pages, 14 figure

    Tunneling spectra of submicron Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} intrinsic Josephson junctions: evolution from superconducting gap to pseudogap

    Full text link
    Tunneling spectra of near optimally doped, submicron Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} intrinsic Josephson junctions are presented, and examined in the region where the superconducting gap evolves into pseudogap. The spectra are analyzed using a self-energy model, proposed by Norman {\it et al.}, in which both quasiparticle scattering rate Γ\Gamma and pair decay rate ΓΔ\Gamma_{\Delta} are considered. The density of states derived from the model has the familiar Dynes' form with a simple replacement of Γ\Gamma by γ+\gamma_+ = (Γ\Gamma + ΓΔ\Gamma_{\Delta})/2. The γ+\gamma_+ parameter obtained from fitting the experimental spectra shows a roughly linear temperature dependence, which puts a strong constraint on the relation between Γ\Gamma and ΓΔ\Gamma_{\Delta}. We discuss and compare the Fermi arc behavior in the pseudogap phase from the tunneling and angle-resolved photoemission spectroscopy experiments. Our results indicate an excellent agreement between the two experiments, which is in favor of the precursor pairing view of the pseudogap.Comment: 7 pages, 6 figure
    • …
    corecore