873 research outputs found
Response to requests for general practice out of hours: geographical analysis in north west England
The organisation of out of hours general practice (GP) in
the UK has changed rapidly in recent years as practice
based rotas and deputising services have given way to GP
cooperatives in many areas. At the same time, the proportion
of patients contacting an out of hours service who receive
telephone advice only, rather than a face to face consultation,
has risen substantially, although patients continue to express
strong preferences for personal contact with a doctor out of
hours. We examined the effect of the distance of the patient
from the primary care centre on the doctorâs decision to see
the patient face to face
The Neutron Halo in Heavy Nuclei Calculated with the Gogny Force
The proton and neutron density distributions, one- and two-neutron separation
energies and radii of nuclei for which neutron halos are experimentally
observed, are calculated using the self-consistent Hartree-Fock-Bogoliubov
method with the effective interaction of Gogny. Halo factors are evaluated
assuming hydrogen-like antiproton wave functions. The factors agree well with
experimental data. They are close to those obtained with Skyrme forces and with
the relativistic mean field approach.Comment: 13 pages in Latex and 17 figures in ep
The VLBA Imaging and Polarimetry Survey at 5 GHz
We present the first results of the VLBA Imaging and Polarimetry Survey
(VIPS), a 5 GHz VLBI survey of 1,127 sources with flat radio spectra. Through
automated data reduction and imaging routines, we have produced publicly
available I, Q, and U images and have detected polarized flux density from 37%
of the sources. We have also developed an algorithm to use each source's I
image to automatically classify it as a point-like source, a core-jet, a
compact symmetric object (CSO) candidate, or a complex source. The mean ratio
of the polarized to total 5 GHz flux density for VIPS sources with detected
polarized flux density ranges from 1% to 20% with a median value of about 5%.
We have also found significant evidence that the directions of the jets in
core-jet systems tend to be perpendicular to the electric vector position
angles (EVPAs). The data is consistent with a scenario in which ~24% of the
polarized core-jets have EVPAs that are anti-aligned with the directions of
their jet components and which have a substantial amount of Faraday rotation.
In addition to these initial results, plans for future follow-up observations
are discussed.Comment: 36 pages, 3 tables, 13 figures; accepted for publication in Ap
Phase Separation of Rigid-Rod Suspensions in Shear Flow
We analyze the behavior of a suspension of rigid rod-like particles in shear
flow using a modified version of the Doi model, and construct diagrams for
phase coexistence under conditions of constant imposed stress and constant
imposed strain rate, among paranematic, flow-aligning nematic, and log-rolling
nematic states. We calculate the effective constitutive relations that would be
measured through the regime of phase separation into shear bands. We calculate
phase coexistence by examining the stability of interfacial steady states and
find a wide range of possible ``phase'' behaviors.Comment: 23 pages 19 figures, revised version to be published in Physical
Review
Recommended from our members
An assessment of a three-beam Doppler lidar wind profiling method for use in urban areas
Currently there are few observations of the urban wind field at heights other than rooftop level. Remote sensing instruments such as Doppler lidars provide wind speed data at many heights, which would be useful in determining wind loadings of tall buildings, and predicting local air quality. Studies comparing remote sensing with traditional anemometers carried out in flat, homogeneous terrain often use scan patterns which take several minutes. In an urban context the flow changes quickly in space and time, so faster scans are required to ensure little change in the flow over the scan period. We compare 3993 h of wind speed data collected using a three-beam Doppler lidar wind profiling method with data from a sonic anemometer (190 m). Both instruments are located in central London, UK; a highly built-up area. Based on wind profile measurements every 2 min, the uncertainty in the hourly mean wind speed due to the sampling frequency is 0.05â0.11 m sâ1. The lidar tended to overestimate the wind speed by â0.5 m sâ1 for wind speeds below 20 m sâ1. Accuracy may be improved by increasing the scanning frequency of the lidar. This method is considered suitable for use in urban areas
Probing Ion-Ion and Electron-Ion Correlations in Liquid Metals within the Quantum Hypernetted Chain Approximation
We use the Quantum Hypernetted Chain Approximation (QHNC) to calculate the
ion-ion and electron-ion correlations for liquid metallic Li, Be, Na, Mg, Al,
K, Ca, and Ga. We discuss trends in electron-ion structure factors and radial
distribution functions, and also calculate the free-atom and metallic-atom
form-factors, focusing on how bonding effects affect the interpretation of
X-ray scattering experiments, especially experimental measurements of the
ion-ion structure factor in the liquid metallic phase.Comment: RevTeX, 19 pages, 7 figure
Vibrational and rotational sequences in 101 Mo and 103,4 Ru studied via multinucleon transfer reactions
The near yrast states of 101 Mo and 103,104 Ru have been studied following their population via heavy ion multinucleon transfer reactions between a 136 Xe beam and a thin, self supporting 100 Mo target. The ground state sequence in 104 Ru can be understood as demonstrating a simple evolution from a quasi vibrational structure at lower spins to statically deformed, quasi rotational excitation involving the population of a pair of low Omega h11 2 neutron orbitals. The effect of the decoupled h11 2 orbital on this vibration to rotational evolution is demonstrated by an extension of the E GOS prescription to include odd A nuclei. The experimental results are also compared with self consistent Total Routhian Surface calculations which also highlight the polarising role of the highly aligned neutron h11 2 orbital in these nucle
Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns
Most hypotheses explaining the general gradient of higher diversity toward the equator are implicit or explicit about greater species packing in the tropics. However, global patterns of diversity within guilds, including trophic guilds (i.e., groups of organisms that use similar food resources), are poorly known. We explored global diversity patterns of a key trophic guild in stream ecosystems, the detritivore shredders. This was motivated by the fundamental ecological role of shredders as decomposers of leaf litter and by some records pointing to low shredder diversity and abundance in the tropics, which contrasts with diversity patterns of most major taxa for which broad-scale latitudinal patterns haven been examined. Given this evidence, we hypothesized that shredders are more abundant and diverse in temperate than in tropical streams, and that this pattern is related to the higher temperatures and lower availability of high-quality leaf litter in the tropics. Our comprehensive global survey (129 stream sites from 14 regions on six continents) corroborated the expectedlatitudinal pattern and showed that shredder distribution (abundance, diversity and assemblage composition) was explained by a combination of factors, including water temperature (some taxa were restricted to cool waters) and biogeography (some taxa were more diverse in particular biogeographic realms). In contrast to our hypothesis, shredder diversity was unrelated to leaf toughness, but it was inversely related to litter diversity. Our findings markedly contrast with global trends of diversity for most taxa, and with the general rule of higher consumer diversity at higher levels of resource diversity. Moreover, they highlight the emerging role of temperature in understanding global patterns of diversity, which is of great relevance in the face of projected global warming. © 2011 by the Ecological Society of America.Peer Reviewe
Towards Machine Wald
The past century has seen a steady increase in the need of estimating and
predicting complex systems and making (possibly critical) decisions with
limited information. Although computers have made possible the numerical
evaluation of sophisticated statistical models, these models are still designed
\emph{by humans} because there is currently no known recipe or algorithm for
dividing the design of a statistical model into a sequence of arithmetic
operations. Indeed enabling computers to \emph{think} as \emph{humans} have the
ability to do when faced with uncertainty is challenging in several major ways:
(1) Finding optimal statistical models remains to be formulated as a well posed
problem when information on the system of interest is incomplete and comes in
the form of a complex combination of sample data, partial knowledge of
constitutive relations and a limited description of the distribution of input
random variables. (2) The space of admissible scenarios along with the space of
relevant information, assumptions, and/or beliefs, tend to be infinite
dimensional, whereas calculus on a computer is necessarily discrete and finite.
With this purpose, this paper explores the foundations of a rigorous framework
for the scientific computation of optimal statistical estimators/models and
reviews their connections with Decision Theory, Machine Learning, Bayesian
Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty
Quantification and Information Based Complexity.Comment: 37 page
- âŠ