14 research outputs found

    A Hollow Sphere Soft Lithography Approach for Long-Term Hanging Drop Methods

    No full text
    In conventional hanging drop (HD) methods, embryonic stem cell aggregates or embryoid bodies (EBs) are often maintained in small inverted droplets. Gravity limits the volumes of these droplets to less than 50 μL [mu L], and hence such cell cultures can only be sustained for a few days without frequent media changes. Here we present a new approach to performing long-term HD methods (10–15 days) that can provide larger media reservoirs in a HD format to maintain more consistent culture media conditions. To implement this approach, we fabricated hollow sphere (HS) structures by injecting liquid drops into noncured poly(dimethylsiloxane) mixtures. These structures served as cell culture chambers with large media volumes (500 μL [mu L] in each sphere) where EBs could grow without media depletion. The results showed that the sizes of the EBs cultured in the HS structures in a long-term HD format were approximately twice those of conventional HD methods after 10 days in culture. Further, HS cultures showed multilineage differentiation, similar to EBs cultured in the HD method. Due to its ease of fabrication and enhanced features, this approach may be of potential benefit as a stem cell culture method for regenerative medicine.National Institutes of Health (U.S.) (DE019024) (HL092836) (EB007249)Korean Research Foundation (Grant KRF-2007-357-D00035)German Academic Exchange Servic

    Cytopede: A Three-Dimensional Tool for Modeling Cell Motility on a Flat Surface

    No full text
    When cultured on flat surfaces, fibroblasts and many other cells spread to form thin lamellar sheets. Motion then occurs by extension of the sheet at the leading edge and retraction at the trailing edge. Comprehensive quantitative models of these phenomena have so far been lacking and to address this need, we have designed a three-dimensional code called Cytopede specialized for the simulation of the mechanical and signaling behavior of plated cells. Under assumptions by which the cytosol and the cytoskeleton are treated from a continuum mechanical perspective, Cytopede uses the finite element method to solve mass and momentum equations for each phase, and thus determine the time evolution of cellular models. We present the physical concepts that underlie Cytopede together with the algorithms used for their implementation. We then validate the approach by a computation of the spread of a viscous sessile droplet. Finally, to exemplify how Cytopede enables the testing of ideas about cell mechanics, we simulate a simple fibroblast model. We show how Cytopede allows computation, not only of basic characteristics of shape and velocity, but also of maps of cell thickness, cytoskeletal density, cytoskeletal flow, and substratum tractions that are readily compared with experimental data

    Comparação entre o método da gota pendente e o método da gota girante para medida da tensão interfacial entre polímeros Comparison between the pendant drop and spinning drop method to measure interfacial tension between polymers

    No full text
    Dois instrumentos, um deles baseado no princípio da gota pendente e o outro baseado no método da gota girante, para medir a tensão interfacial entre polímeros, são apresentados e comparados aqui. Com ambos instrumentos foi possível visualizar a gota de polímero "on line". Os instrumentos mostraram-se complementares quanto às suas áreas de aplicação. O método da gota pendente deve ser usado quando as quantidades de polímero são limitadas ou quando o polímero mais denso é opaco. O método da gota girante deve ser usado quando a degradação térmica pode ser um problema ou quando o polímero menos denso é opaco.<br>In this paper two apparatuses, one based on the principle of the pendant drop method and one based on the principle of the spinning drop are presented and compared. With both apparatuses it was possible to view the drop in real time and calculate the interfacial tension on-line. The two equipments were shown to be complementary in their use. The pendant drop method should be used when there are limited quantities of polymer and/or the denser polymer is opaque. The spinning drop method should be used when thermal degradation could be a problem and/or when the lighter polymer is opaque
    corecore