751 research outputs found
Helping HELP with limited resources: The Luquillo experience
By definition the HELP approach involves the active participation of individuals from a wide range of disciplines and backgrounds, including representatives of industry, academics, natural resource managers, and local officials and community leaders. While there is considerable enthusiasm and support for the integrated HELP approach, a central problem for all HELP basins is how to effectively engage individuals and groups with few, if any financial resources. In the Luquillo HELP project we have managed this issue by focusing our efforts on holding small, public meetings and workshops with technocrats and managers who are engaged in local water resource management. To date several forums have been organised, including: technical meetings with the directors of natural resource agencies; presentations and panel discussions at the meetings of local professional societies, including the societies of Civil Engineers and Architects, the Commonwealth Association of Tourism, the Association of Builders and Developers, and the Puerto Rican Association of Lawyers. During these forums HELP specialists gave presentations and led discussions on how integrated watershed management can help resolve local problems. Because the audience are directly involved with these issues, they are quite responsive to these discussions and have often provided unique solutions to common problems. Technical workshops are co-sponsored by local municipalities – these day-long workshops are hosted by a municipality and include managers from other municipalities, the local water authority, and local community leaders. Additional activities include: technical advice on water infrastructure projects is given; there are educational exchanges between local and international students, scientists, natural resource managers, and community leaders; and synthesis publications relevant to integrated water resource management are produced. Other activities have included compiling oral environmental histories and organising watershed restoration activities. This paper describes these activities and discusses the benefits and costs of each approach.Keywords: integrated water resource management, tropical mountains, Puerto Ric
Drag reduction by polyethylene glycol in the tail arterial bed of normotensive and hypertensive rats
This study was designed to evaluate the effect of drag reducer polymers (DRP) on arteries from normotensive (Wistar) and spontaneously hypertensive rats (SHR). Polyethylene glycol (PEG 4000 at 5000 ppm) was perfused in the tail arterial bed with (E+) and without endothelium (E-) from male, adult Wistar (N = 14) and SHR (N = 13) animals under basal conditions (constant flow at 2.5 mL/min). In these preparations, flow-pressure curves (1.5 to 10 mL/min) were constructed before and 1 h after PEG 4000 perfusion. Afterwards, the tail arterial bed was fixed and the internal diameters of the arteries were then measured by microscopy and drag reduction was assessed based on the values of wall shear stress (WSS) by computational simulation. In Wistar and SHR groups, perfusion of PEG 4000 significantly reduced pulsatile pressure (Wistar/E+: 17.5 ± 2.8; SHR/E+: 16.3 ± 2.7%), WSS (Wistar/E+: 36; SHR/E+: 40%) and the flow-pressure response. The E- reduced the effects of PEG 4000 on arteries from both groups, suggesting that endothelial damage decreased the effect of PEG 4000 as a DRP. Moreover, the effects of PEG 4000 were more pronounced in the tail arterial bed from SHR compared to Wistar rats. In conclusion, these data demonstrated for the first time that PEG 4000 was more effective in reducing the pressure-flow response as well as WSS in the tail arterial bed of hypertensive than of normotensive rats and these effects were amplified by, but not dependent on, endothelial integrity. Thus, these results show an additional mechanism of action of this polymer besides its mechanical effect through the release and/or bioavailability of endothelial factors
A real-space, rela-time method for the dielectric function
We present an algorithm to calculate the linear response of periodic systems
in the time-dependent density functional thoery, using a real-space
representation of the electron wave functions and calculating the dynamics in
real time. The real-space formulation increases the efficiency for calculating
the interaction, and the real-time treatment decreases storage requirements and
the allows the entire frequency-dependent response to be calculated at once. We
give as examples the dielectric functions of a simple metal, lithium, and an
elemental insulator, diamond.Comment: 17 pages, Latex, 5 figure
Determining what represents value in the treatment of prurigo nodularis and its key unmet needs in Spain through Multi-Criteria Decision Analysis
Background: Prurigo nodularis (PN) is a chronic, debilitating dermatologic
disease characterised by the presence of highly pruritic nodular lesions. PN
highly impacts on patients' quality of life as there are no specific treatments
available in Spain.
Objectives: Determine the main value drivers in the treatment of PN in Spain
and its main unmet needs using Multi‐Criteria Decision Analysis (MCDA).
Methods: Literature review to synthesise relevant evidence in an evidence
matrix based on the MCDA EVIDEM framework adapted to Spain. A
multidisciplinary panel composed of dermatologists, hospital pharmacists and
a patient weighted (5‐point scale; 0 minimum importance, 5 maximum
importance) and scored each criterion included in the framework (from −5 to
5 or 0 to 5 depending on the criterion). Results were discussed in a reflective
group session.
Results: PN was considered a severe (3.3 ± 0.7) and infrequent (2.0 ± 0.7)
disease, with high unmet needs (4.2 ± 0.7) mainly due to the lack of available
treatments with specific indication for PN. Current off‐label treatments were
perceived to have limited efficacy/effectiveness (1.8 ± 1.1), an unfavourable
long‐term safety profile (2.1 ± 0.9) and low therapeutic impact (1.7 ± 1.1). The
measure of patient‐reported outcomes (2.7 ± 0.9) was perceived as important,
but available tools are not specific. Although the cost of available treatments
was not considered high (2.4 ± 1.5), experts agreed that PN is associated with
moderately high other medical costs (3.6 ± 1.1) and indirect costs (3.1 ± 0.9).
Experts considered that current guidelines and consensus (2.6 ± 0.7) are not
clear on severity criteria and treatment algorithm. The quality of evidence
(1.4 ± 0.5) of currently used off‐label treatments was perceived as low due to a
lack of published clinical trials.10 página
Self-consistent calculation of total energies of the electron gas using many-body perturbation theory
The performance of many-body perturbation theory for calculating ground-state properties is investigated. We present fully numerical results for the electron gas in three and two dimensions in the framework of the GW approximation. The overall agreement with very accurate Monte Carlo data is excellent, even for those ranges of densities for which the GW approach is often supposed to be unsuitable. The latter seems to be due to the fulfillment of general conservation rules. These results open further prospects for accurate calculations of ground-state properties circumventing the limitations of standard density-functional theory
Correlation energy of a two-dimensional electron gas from static and dynamic exchange-correlation kernels
We calculate the correlation energy of a two-dimensional homogeneous electron
gas using several available approximations for the exchange-correlation kernel
entering the linear dielectric response of the system.
As in the previous work of Lein {\it et al.} [Phys. Rev. B {\bf 67}, 13431
(2000)] on the three-dimensional electron gas, we give attention to the
relative roles of the wave number and frequency dependence of the kernel and
analyze the correlation energy in terms of contributions from the plane. We find that consistency of the kernel with the electron-pair
distribution function is important and in this case the nonlocality of the
kernel in time is of minor importance, as far as the correlation energy is
concerned. We also show that, and explain why, the popular Adiabatic Local
Density Approximation performs much better in the two-dimensional case than in
the three-dimensional one.Comment: 9 Pages, 4 Figure
Phase diagram of the extended Hubbard chain with charge-dipole interactions
We consider a modified extended Hubbard model (EHM) which, in addition to the
on-site repulsion U and nearest-neighbor repulsion V, includes polarization
effects in second-order perturbation theory. The model is equivalent to an EHM
with renormalized U plus a next-nearest-neighbor repulsion term. Using a method
based on topological quantum numbers (charge and spin Berry phases), we
generalize to finite hopping t the quantum phase diagram in one dimension
constructed by van den Brink et al. (Phys. Rev. Lett. 75, 4658 (1995)). At
hopping t=0 there are two charge density-wave phases, one spin density-wave
phase and one intermediate phase with charge and spin ordering, depending on
the parameter values. At t \neq 0 the nature of each phase is confirmed by
studying correlation functions. However, in addition to the strong-coupling
phases, a small region with bond ordering appears. The region occupied by the
intermediate phase first increases and then decreases with increasing t, until
it finally disappears for t of the order but larger than U. For small t, the
topological transitions agree with the results of second order perturbation
theory.Comment: 6 pages, 5 figures, two columns latex version. Accepted for
publication in Physical Review B. Mistaken reference 16 has been correcte
Uncertainty analysis in environmental radioactivity measurements using the Monte Carlo code MCNP5
High Purity Germanium (HPGe) detectors are widely used for environmental radioactivity measurements due to their excellent energy resolution. Monte Carlo (MC) codes are a useful tool to complement experimental measurements in calibration procedures at the laboratory. However, the efficiency curve of the detector can vary due to uncertainties associated with measurements. These uncertainties can be classified into some categories: geometrical parameters of the measurement (distance source-detector, volume of the source), properties of the radiation source (radionuclide activity, branching ratio), and detector characteristics (Ge dead layer, active volume, end cap thickness). The Monte Carlo simulation can be also affected by other kind of uncertainties mainly related to cross sections and to the calculation itself. Normally, all these uncertainties are not well known and it is required a deep analysis to determine their effect on the detector efficiency. In this work, the Noether-Wilks formula is used to carry out the uncertainty analysis. A Probability Density Function (PDF) is assigned to each variable involved in the sampling process. The size of the sampling is determined from the characteristics of the tolerance intervals by applying the Noether Wilks formula. Results of the analysis transform the efficiency curve into a region of possible values into the tolerance intervals. Results show a good agreement between experimental measurements and simulations for two different matrices (water and sand).Gallardo Bermell, S.; Querol Vives, A.; Ortiz Moragón, J.; Ródenas Diago, J.; Verdú Martín, GJ.; Villanueva López, JF. (2015). Uncertainty analysis in environmental radioactivity measurements using the Monte Carlo code MCNP5. Radiation Physics and Chemistry. 116:214-218. doi:10.1016/j.radphyschem.2015.05.023S21421811
- …