63 research outputs found
Recommended from our members
Cosmic Ray Electron Science with GLAST
Cosmic ray electrons at high energy carry information about their sources, their diffusion in local magnetic fields and their interactions with the photon fields through which they travel. The spectrum of the particles is affected by inverse Compton losses and synchrotron losses, the rates of which are proportional to the square of the particle's energy making the spectra very steep. However, GLAST will be able to make unique and very high statistics measurements of electrons from {approx}20 to {approx}700 GeV that will allow us to search for anisotropies in arrival direction and spectral features associated with some dark matter candidates. Complementary information on electrons of still higher energy will be required to see effects of possible individual cosmic ray sources
NLO corrections to ultra-high energy neutrino-nucleon scattering, shadowing and small x
We reconsider the Standard Model interactions of ultra-high energy neutrinos
with matter. The next to leading order QCD corrections are presented for
charged-current and neutral-current processes. Contrary to popular
expectations, these corrections are found to be quite substantial, especially
for very large (anti-) neutrino energies. Hence, they need to be taken into
account in any search for new physics effects in high-energy neutrino
interactions. In our extrapolation of the parton densities to kinematical
regions as yet unexplored directly in terrestrial accelerators, we are guided
by double asymptotic scaling in the large Q^2 and small Bjorken x region and to
models of saturation in the low Q^2 and low x regime. The sizes of the
consequent uncertainties are commented upon. We also briefly discuss some
variables which are insensitive to higher order QCD corrections and are hence
suitable in any search for new physics.Comment: 21 pages, LaTeX2e, uses JHEP3.cls (included), 8 ps files for figures
published versio
Balloon Measurements of Cosmic Ray Muon Spectra in the Atmosphere along with those of Primary Protons and Helium Nuclei over Mid-Latitude
We report here the measurements of the energy spectra of atmospheric muons
and of the cosmic ray primary proton and helium nuclei in a single experiment.
These were carried out using the MASS superconducting spectrometer in a balloon
flight experiment in 1991. The relevance of these results to the atmospheric
neutrino anomaly is emphasized. In particular, this approach allows
uncertainties caused by the level of solar modulation, the geomagnetic cut-off
of the primaries and possible experimental systematics to be decoupled in the
comparison of calculated fluxes of muons to measured muon fluxes. The muon
observations cover the momentum and depth ranges of 0.3-40 GeV/c and 5-886
g/cmsquared, respectively. The proton and helium primary measurements cover the
rigidity range from 3 to 100 GV, in which both the solar modulation and the
geomagnetic cut-off affect the energy spectra at low energies.Comment: 31 pages, including 17 figures, simplified apparatus figure, to
appear in Phys. Rev.
Measurements of Atmospheric Antiprotons
We measured atmospheric antiproton spectra in the energy range 0.2 to 3.4
GeV, at sea level and at balloon altitude in the atmospheric depth range 4.5 to
26 g/cm^2. The observed energy spectra, including our previous measurements at
mountain altitude, were compared with estimated spectra calculated on various
assumptions regarding the energy distribution of antiprotons that interacted
with air nuclei.Comment: Accepted for publication in PL
Measurements of 0.2 to 20 GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer
We measured low energy cosmic-ray proton and helium spectra in the kinetic
energy range 0.215 - 21.5 GeV/n at different solar activities during a period
from 1997 to 2002. The observations were carried out with the BESS spectrometer
launched on a balloon at Lynn Lake, Canada. A calculation for the correction of
secondary particle backgrounds from the overlying atmosphere was improved by
using the measured spectra at small atmospheric depths ranging from 5 through
37 g/cm^2. The uncertainties including statistical and systematic errors of the
obtained spectra at the top of atmosphere are 5-7 % for protons and 6-9 % for
helium nuclei in the energy range 0.5 - 5 GeV/n.Comment: 27 pages, 7 Tables, 9 figures, Submitted to Astroparticle Physic
Propagation of secondary antiprotons and cosmic rays in the Galaxy
Recent measurements of the cosmic ray (CR) antiproton flux have been shown to
challenge existing CR propagation models. It was shown that the reacceleration
models designed to match secondary to primary nuclei ratios (e.g., B/C) produce
too few antiprotons. In the present paper we discuss one possibility to
overcome these difficulties. Using the measured antiproton flux AND B/C ratio
to fix the diffusion coefficient, we show that the spectra of primary nuclei as
measured in the heliosphere may contain a fresh local "unprocessed" component
at low energies perhaps associated with the Local Bubble, thus decreasing the
measured secondary to primary nuclei ratio. The independent evidence for SN
activity in the solar vicinity in the last few Myr supports this idea. The
model reproduces antiprotons, B/C ratio, and elemental abundances up to Ni
(Z<=28). Calculated isotopic distributions of Be and B are in perfect agreement
with CR data. The abundances of three "radioactive clock" isotopes in CR, 10Be,
26Al, 36Cl, are all consistent and indicate a halo size z_h~4 kpc based on the
most accurate data taken by the ACE spacecraft.Comment: 6 pages, 5 ps-figures, cospar.sty; Proc. of 34th COSPAR Scientific
Assembly (Houston, 10-19 October 2002). Submitted to Advances in Space
Research. More details can be found at
http://www.gamma.mpe-garching.mpg.de/~aws/aws.htm
Measurements of Proton, Helium and Muon Spectra at Small Atmospheric Depths with the BESS Spectrometer
The cosmic-ray proton, helium, and muon spectra at small atmospheric depths
of 4.5 -- 28 g/cm^2 were precisely measured during the slow descending period
of the BESS-2001 balloon flight. The variation of atmospheric secondary
particle fluxes as a function of atmospheric depth provides fundamental
information to study hadronic interactions of the primary cosmic rays with the
atmosphere.Comment: 21 pages, 11 figures, 4 table
On possible interpretations of the high energy electron-positron spectrum measured by the Fermi Large Area Telescope
The Fermi-LAT experiment recently reported high precision measurements of the
spectrum of cosmic-ray electrons-plus-positrons (CRE) between 20 GeV and 1 TeV.
The spectrum shows no prominent spectral features, and is significantly harder
than that inferred from several previous experiments. Here we discuss several
interpretations of the Fermi results based either on a single large scale
Galactic CRE component or by invoking additional electron-positron primary
sources, e.g. nearby pulsars or particle Dark Matter annihilation. We show that
while the reported Fermi-LAT data alone can be interpreted in terms of a single
component scenario, when combined with other complementary experimental
results, specifically the CRE spectrum measured by H.E.S.S. and especially the
positron fraction reported by PAMELA between 1 and 100 GeV, that class of
models fails to provide a consistent interpretation. Rather, we find that
several combinations of parameters, involving both the pulsar and dark matter
scenarios, allow a consistent description of those results. We also briefly
discuss the possibility of discriminating between the pulsar and dark matter
interpretations by looking for a possible anisotropy in the CRE flux.Comment: 29 pages, 12 figures. Final version accepted for publication in
Astroparticle Physic
Measurement of cosmic-ray low-energy antiproton spectrum with the first BESS-Polar Antarctic flight
The BESS-Polar spectrometer had its first successful balloon flight over
Antarctica in December 2004. During the 8.5-day long-duration flight, almost
0.9 billion events were recorded and 1,520 antiprotons were detected in the
energy range 0.1-4.2 GeV. In this paper, we report the antiproton spectrum
obtained, discuss the origin of cosmic-ray antiprotons, and use antiprotons to
probe the effect of charge sign dependent drift in the solar modulation.Comment: 18 pages, 1 table, 5 figures, submitted to Physics Letters
Measurements of Primary and Atmospheric Cosmic-Ray Spectra with the BESS-TeV Spectrometer
Primary and atmospheric cosmic-ray spectra were precisely measured with the
BESS-TeV spectrometer. The spectrometer was upgraded from BESS-98 to achieve
seven times higher resolution in momentum measurement. We report absolute
fluxes of primary protons and helium nuclei in the energy ranges, 1-540 GeV and
1-250 GeV/n, respectively, and absolute flux of atmospheric muons in the
momentum range 0.6-400 GeV/c.Comment: 26 pages, 9 figures, 3 tables, Submitted to Phys. Lett.
- …