3 research outputs found

    Variants of fattening and flavor symmetry restoration

    Full text link
    We study the effects of different "fat link" actions for Kogut-Susskind quarks on flavor symmetry breaking. Our method is mostly empirical - we compute the pion spectrum with different valence quark actions on common sets of sample lattices. Different actions are compared, as best we can, at equivalent physical points. We find significant reductions in flavor symmetry breaking relative to the conventional or to the "link plus staple" actions, with a reasonable cost in computer time. We also develop and test a scheme for approximate unitarization of the fat links. While our tests have concentrated on the valence quark action, our results will be useful in designing simulations with dynamical quarks.Comment: 16 pages, LaTeX, PostScript figures include

    Scaling tests of the improved Kogut-Susskind quark action

    Get PDF
    Improved lattice actions for Kogut-Susskind quarks have been shown to improve rotational symmetry and flavor symmetry. In this work we find improved scaling behavior of the rho and nucleon masses expressed in units of a length scale obtained from the static quark potential, and better behavior of the Dirac operator in instanton backgrounds.Comment: 4 pages, 4 figures, Revte
    corecore