8 research outputs found

    The Physics of the B Factories

    Get PDF

    In situ measurements of creatine kinase flux by NMR. The lessons from bioengineered mice

    Full text link
    P-31 nuclear magnetic resonance (NMR) is uniquely suited to measure the kinetics of the phosphoryl-exchange reaction catalyzed by creatine kinase in intact mammalian tissue, especially striated muscle. Recently developed transgenic mouse models of the creatine kinase iso-enzyme system open novel opportunities to assess the functional importance of the individual iso-enzymes and their relative contribution to the total in situ flux through the CK reaction. This chapter reviews the most recent findings from NMR flux measurements on such genetic models of CK function. Findings in intact mouse skeletal and cardiac muscle in vivo are compared to data from purified mitochondrial and cytosolic creatine kinase in vitro. The relevance of findings in transgenic animals for the function of CK in wild-type tissue is described and the perspectives of transgenic techniques in future quantitative studies on the creatine kinase iso-enzyme system are indicated

    Fluxes through cytosolic and mitochondrial creatine kinase, measured by P-31 NMR

    Full text link
    The kinetic properties of the cytoplasmic and the mitochondrial iso-enzymes of creatine kinase from striated muscle were studied in vitro and in vivo. The creatine kinase (CK) iso-enzyme family has a multi-faceted role in cellular energy metabolism and is characterized by a complex pattern of tissue-specific expression and subcellular distribution. In mammalian tissues, there is always co-expression of at least two different CK isoforms. As a result, previous studies into the role of CK in energy metabolism have not been able to directly differentiate between the individual CK species. Here, we describe experiments which were directed at achieving this goal. First, we studied the kinetic properties of the muscle-specific cytoplasmic and mitochondrial CK isoforms in purified form under in vitro conditions, using a combination of P-31 NMR and spectrophotometry. Secondly, P-31 NMR measurements of the flux through the CK reaction were carried out on intact skeletal and heart muscle from wild-type mice and from transgenic mice, homozygous for a complete deficiency of the muscle-type cytoplasmic CK isoform. Skeletal muscle and heart were compared because they differ strongly in the relative abundance of the CK isoforms. The present data indicate that the kinetic properties of cytoplasmic and mitochondrial CK are substantially different, both in vitro and in vivo. This finding particularly has implications for the interpretation of in vivo studies with P-31 NMR

    A novel guinea pig model of Chlamydia trachomatis genital tract infection

    Full text link
    Contains fulltext : 95582.pdf (publisher's version ) (Closed access)Genital Chlamydia trachomatis infections often result in pelvic inflammatory disease and sequelae including infertility and ectopic pregnancies. In addition to the already established murine models, the development of other animal models is necessary to study the safety and efficacy of prototype vaccine candidates. The intravaginal infection of guinea pigs with C. trachomatis has been tested in three independent studies. The first two studies investigated the effect of hormonal treatment of the animals prior to infection with serovars D and E. The results showed that estradiol treatment was required for sustained infection. The third study conducted an immunization-challenge experiment to explore the feasibility of measuring protection in this guinea pig model. C. trachomatis bacteria were sampled using vaginal swabs and measured by qPCR. Using immunohistochemistry the bacteria were detected in the oviducts 19 days post-infection, indicating that the estradiol treatment resulted in ascending infection. Furthermore, immunization of guinea pigs with live EB formulated with ISCOM matrix led to reduction of cervico-vaginal shedding and diminished the severity of pathology. In this study we have developed a new guinea pig model of C. trachomatis female genital tract infection for the purpose of evaluating potential vaccine candidates

    The BaBar detector: Upgrades, operation and performance

    Get PDF
    Contains fulltext : 121729.pdf (preprint version ) (Open Access
    corecore