388 research outputs found

    Gravitational Lorentz Violations from M-Theory

    Full text link
    In an attempt to bridge the gap between M-theory and braneworld phenomenology, we present various gravitational Lorentz-violating braneworlds which arise from p-brane systems. Lorentz invariance is still preserved locally on the braneworld. For certain p-brane intersections, the massless graviton is quasi-localized. This also results from an M5-brane in a C-field. In the case of a p-brane perturbed from extremality, the quasi-localized graviton is massive. For a braneworld arising from global AdS_5, gravitons travel faster when further in the bulk, thereby apparently traversing distances faster than light.Comment: 13 pages, 1 figure, LaTeX, references added, minor corrections and addition

    Breakdown of Semiclassical Methods in de Sitter Space

    Full text link
    Massless interacting scalar fields in de Sitter space have long been known to experience large fluctuations over length scales larger than Hubble distances. A similar situation arises in condensed matter physics in the vicinity of a critical point, and in this better-understood situation these large fluctuations indicate the failure in this regime of mean-field methods. We argue that for non-Goldstone scalars in de Sitter space, these fluctuations can also be interpreted as signaling the complete breakdown of the semi-classical methods widely used throughout cosmology. By power-counting the infrared properties of Feynman graphs in de Sitter space we find that for a massive scalar interacting through a \lambda \phi^4$ interaction, control over the loop approximation is lost for masses smaller than m \simeq \sqrt \lambda H/2\pi, where H is the Hubble scale. We briefly discuss some potential implications for inflationary cosmology.Comment: 24 pages, 7 figures, v2; added references, clarified the resummation discussio

    Reheating the Universe After Multi-Field Inflation

    Full text link
    We study in detail (p)reheating after multi-field inflation models with a particular focus on N-flation. We consider a variety of different couplings between the inflatons and the matter sector, including both quartic and trilinear interactions with a light scalar field. We show that the presence of multiple oscillating inflatons makes parametric resonance inefficient in the case of the quartic interactions. Moreover, perturbative processes do not permit a complete decay of the inflaton for this coupling. In order to recover the hot big bang, we must instead consider trilinear couplings. In this case we show that strong nonperturbative preheating is possible via multi-field tachyonic resonance. In addition, late-time perturbative effects do permit a complete decay of the condensate. We also study the production of gauge fields for several prototype couplings, finding similar results to the trilinear scalar coupling. During the course of our analysis we develop the mathematical theory of the quasi-periodic Mathieu equation, the multi-field generalization of the Floquet theory familiar from preheating after single field inflation. We also elaborate on the theory of perturbative decays of a classical inflaton condensate, which is applicable in single-field models also.Comment: 46+1 pages, 19 figure

    Extracting W Boson Couplings from the e+ee^{+}e^{-} Production of Four Leptons

    Full text link
    We consider the processes e+e+ννˉe^{+}e^{-}\rightarrow \ell^{+} \ell^{\prime -}\nu \bar{\nu}^{\prime}, including all possible charged lepton combinations, with regard to measuring parameters characterizing the WW boson. We calculate at what level these processes can be used to measure anamolous triple-boson vertice coupling parameters for the cases of e+ee^{+}e^{-} colliders at 500 GeVGeV and 1 TeVTeV center of mass energies.Comment: 13 pages,OCIP/C-93-

    Precision Electroweak Observables in the Minimal Moose Little Higgs Model

    Full text link
    Little Higgs theories, in which the Higgs particle is realized as the pseudo-Goldstone boson of an approximate global chiral symmetry have generated much interest as possible alternatives to weak scale supersymmetry. In this paper we analyze precision electroweak observables in the Minimal Moose model and find that in order to be consistent with current experimental bounds, the gauge structure of this theory needs to be modified. We then look for viable regions of parameter space in the modified theory by calculating the various contributions to the S and T parameters.Comment: v2: 17 pages, 9 figures. Typeset in JHEP style. Added a references and two figures showing parameter space for each of two reference points. Corrected typo

    Brane Bremsstrahlung in DBI Inflation

    Full text link
    We consider the effect of trapped branes on the evolution of a test brane whose motion generates DBI inflation along a warped throat. The coupling between the inflationary brane and a trapped brane leads to the radiation of non-thermal particles on the trapped brane. We calculate the Gaussian spectrum of the radiated particles and their backreaction on the DBI motion of the inflationary brane. Radiation occurs for momenta lower than the speed of the test brane when crossing the trapped brane. The slowing down effect is either due to a parametric resonance when the interaction time is small compared to the Hubble time or a tachyonic resonance when the interaction time is large. In both cases the motion of the inflationary brane after the interaction is governed by a chameleonic potential,which tends to slow it down. We find that a single trapped brane can hardly slow down a DBI inflaton whose fluctuations lead to the Cosmic Microwave Background spectrum. A more drastic effect is obtained when the DBI brane encounters a tightly spaced stack of trapped branes.Comment: 20 pages, 1 figur

    Fluctuations of an evaporating black hole from back reaction of its Hawking radiation: Questioning a premise in earlier work

    Full text link
    This paper delineates the first steps in a systematic quantitative study of the spacetime fluctuations induced by quantum fields in an evaporating black hole. We explain how the stochastic gravity formalism can be a useful tool for that purpose within a low-energy effective field theory approach to quantum gravity. As an explicit example we apply it to the study of the spherically-symmetric sector of metric perturbations around an evaporating black hole background geometry. For macroscopic black holes we find that those fluctuations grow and eventually become important when considering sufficiently long periods of time (of the order of the evaporation time), but well before the Planckian regime is reached. In addition, the assumption of a simple correlation between the fluctuations of the energy flux crossing the horizon and far from it, which was made in earlier work on spherically-symmetric induced fluctuations, is carefully analyzed and found to be invalid. Our analysis suggests the existence of an infinite amplitude for the fluctuations of the horizon as a three-dimensional hypersurface. We emphasize the need for understanding and designing operational ways of probing quantum metric fluctuations near the horizon and extracting physically meaningful information.Comment: 10 pages, REVTeX; minor changes, a few references added and a brief discussion of their relevance included. To appear in the proceedings of the 10th Peyresq meeting. Dedicated to Rafael Sorkin on the occasion of his 60th birthda

    Cosmic Black-Hole Hair Growth and Quasar OJ287

    Full text link
    An old result ({\tt astro-ph/9905303}) by Jacobson implies that a black hole with Schwarzschild radius rsr_s acquires scalar hair, Qrs2μQ \propto r_s^2 \mu, when the (canonically normalized) scalar field in question is slowly time-dependent far from the black hole, tϕμMp\partial_t \phi \simeq \mu M_p with μrs1\mu r_s \ll 1 time-independent. Such a time dependence could arise in scalar-tensor theories either from cosmological evolution, or due to the slow motion of the black hole within an asymptotic spatial gradient in the scalar field. Most remarkably, the amount of scalar hair so induced is independent of the strength with which the scalar couples to matter. We argue that Jacobson's Miracle Hair-Growth Formula©{}^\copyright implies, in particular, that an orbiting pair of black holes can radiate {\em dipole} radiation, provided only that the two black holes have different masses. Quasar OJ 287, situated at redshift z0.306z \simeq 0.306, has been argued to be a double black-hole binary system of this type, whose orbital decay recently has been indirectly measured and found to agree with the predictions of General Relativity to within 6%. We argue that the absence of observable scalar dipole radiation in this system yields the remarkable bound μ<(16days)1|\,\mu| < (16 \, \hbox{days})^{-1} on the instantaneous time derivative at this redshift (as opposed to constraining an average field difference, Δϕ\Delta \phi, over cosmological times), provided only that the scalar is light enough to be radiated --- i.e. m \lsim 10^{-23} eV --- independent of how the scalar couples to matter. This can also be interpreted as constraining (in a more model-dependent way) the binary's motion relative to any spatial variation of the scalar field within its immediate vicinity within its host galaxy.Comment: 20 page

    The absence of ABCA1 decreases soluble ApoE levels but does not diminish amyloid deposition in two murine models of Alzheimer disease.

    Get PDF
    J Biol Chem. 2005 Dec 30;280(52):43243-56. Epub 2005 Oct 5. The absence of ABCA1 decreases soluble ApoE levels but does not diminish amyloid deposition in two murine models of Alzheimer disease. Hirsch-Reinshagen V, Maia LF, Burgess BL, Blain JF, Naus KE, McIsaac SA, Parkinson PF, Chan JY, Tansley GH, Hayden MR, Poirier J, Van Nostrand W, Wellington CL. Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V4Z 5H5, Canada. Abstract ABCA1, a cholesterol transporter expressed in the brain, has been shown recently to be required to maintain normal apoE levels and lipidation in the central nervous system. In addition, ABCA1 has been reported to modulate beta-amyloid (Abeta) production in vitro. These observations raise the possibility that ABCA1 may play a role in the pathogenesis of Alzheimer disease. Here we report that the deficiency of ABCA1 does not affect soluble or guanidine-extractable Abeta levels in Tg-SwDI/B or amyloid precursor protein/presenilin 1 (APP/PS1) mice, but rather is associated with a dramatic reduction in soluble apoE levels in brain. Although this reduction in apoE was expected to reduce the amyloid burden in vivo, we observed that the parenchymal and vascular amyloid load was increased in Tg-SwDI/B animals and was not diminished in APP/PS1 mice. Furthermore, we observed an increase in the proportion of apoE retained in the insoluble fraction, particularly in the APP/PS1 model. These data suggested that ABCA1-mediated effects on apoE levels and lipidation influenced amyloidogenesis in vivo. PMID: 16207707 [PubMed - indexed for MEDLINE

    Effects of genuine dimension-six Higgs operators

    Get PDF
    We systematically discuss the consequences of genuine dimension-six Higgs operators. These operators are not subject to stringent constraints from electroweak precision data. However, they can modify the couplings of the Higgs boson to electroweak gauge bosons and, in particular, the Higgs self-interactions. We study the sensitivity to which those couplings can be probed at future \ee linear colliders in the sub-TeV and in the multi-TeV range. We find that for s=500\sqrt s=500 GeV with a luminosity of 1 ab1^{-1} the anomalous WWHWWH and ZZHZZH couplings may be probed to about the 0.01 level, and the anomalous HHHHHH coupling to about the 0.1 level.Comment: 21 pages, 17 figures; typos corrected and references adde
    corecore