551 research outputs found
A geometric approach to time evolution operators of Lie quantum systems
Lie systems in Quantum Mechanics are studied from a geometric point of view.
In particular, we develop methods to obtain time evolution operators of
time-dependent Schrodinger equations of Lie type and we show how these methods
explain certain ad hoc methods used in previous papers in order to obtain exact
solutions. Finally, several instances of time-dependent quadratic Hamiltonian
are solved.Comment: Accepted for publication in the International Journal of Theoretical
Physic
A LOW COST PHYSICS AND ENGINEERING TRAINING REACTOR. Reactor Design and Feasibility Study
The conceptual design of a low cost training reactor for the instruction of physicists and engineers is covered. It is conceived as an instructional tool for a course such as that given at the Oak Ridge School of Reactor Technology. The reactor is of a modified pool type, and is designed for a maximum power level of one Mw. This arrangement will accommodate engineering experiments, shielding experiments, and critical experiments as well as being useful as a neutron and gamma source. (auth
Testing Holographic Principle from Logarithmic and Higher Order Corrections to Black Hole Entropy
The holographic principle is tested by examining the logarithmic and higher
order corrections to the Bekenstein-Hawking entropy of black holes. For the BTZ
black hole, I find some disagreement in the principle for a holography screen
at spatial infinity beyond the leading order, but a holography with the screen
at the horizon does not, with an appropriate choice of a period parameter,
which has been undetermined at the leading order, in Carlip's horizon-CFT
approach for black hole entropy in any dimension. Its higher dimensional
generalization is considered to see a universality of the parameter choice. The
horizon holography from Carlip's is compared with several other realizations of
a horizon holography, including induced Wess-Zumino-Witten model approaches and
quantum geometry approach, but none of the these agrees with Carlip's, after
clarifications of some confusions. Some challenging open questions are listed
finally.Comment: To appear in JHEP. The corrections in Sec.2 with those that follow
are more clearly explained. Careful distingtion between the implications of
my results to AdS/CFT and to the holograhic principl
Parity Violating Measurements of Neutron Densities
Parity violating electron nucleus scattering is a clean and powerful tool for
measuring the spatial distributions of neutrons in nuclei with unprecedented
accuracy. Parity violation arises from the interference of electromagnetic and
weak neutral amplitudes, and the of the Standard Model couples primarily
to neutrons at low . The data can be interpreted with as much confidence
as electromagnetic scattering. After briefly reviewing the present theoretical
and experimental knowledge of neutron densities, we discuss possible parity
violation measurements, their theoretical interpretation, and applications. The
experiments are feasible at existing facilities. We show that theoretical
corrections are either small or well understood, which makes the interpretation
clean. The quantitative relationship to atomic parity nonconservation
observables is examined, and we show that the electron scattering asymmetries
can be directly applied to atomic PNC because the observables have
approximately the same dependence on nuclear shape.Comment: 38 pages, 7 ps figures, very minor changes, submitted to Phys. Rev.
Induced Parity Nonconserving Interaction and Enhancement of Two-Nucleon Parity Nonconserving Forces
Two-nucleon parity nonconserving (PNC) interaction induced by the
single-particle PNC weak potential and the two-nucleon residual strong
interaction is considered. An approximate analytical formula for this Induced
PNC Interaction (IPNCI) between proton and neutron is derived (), and the
interaction constant is estimated. As a result of coherent contributions from
the nucleons to the PNC potential, IPNCI is an order of magnitude stronger
() than the residual weak two-nucleon interaction and has a
different coordinate and isotopic structure (e.g., the strongest part of IPNCI
does not contribute to the PNC mean field). IPNCI plays an important role in
the formation of PNC effects, e.g., in neutron-nucleus reactions. In that case,
it is a technical way to take into account the contribution of the distant
(small) components of a compound state which dominates the result. The absence
of such enhancement () in the case of T- and P-odd interaction
completes the picture.Comment: Phys. Rev. C, to appear; 17 pages, revtex 3, no figure
Effects of T- and P-odd weak nucleon interaction in nuclei: renormalizations due to residual strong interaction, matrix elements between compound states and their correlations with P-violating matrix elements
Manifestations of P-,T-odd weak interaction between nucleons in nucleus are
considered. Renormalization of this interaction due to residual strong
interaction is studied. Mean squared matrix elements of P-,T-odd weak
interaction between compound states are calculated. Correlators between
P-,T-odd and P-odd, T-even weak interaction matrix elements between compound
states are considered and estimates for these quantities are obtained.Comment: Submitted to Phys. Rev. C; 21 pages, REVTEX 3, no figure
Linear Response, Validity of Semi-Classical Gravity, and the Stability of Flat Space
A quantitative test for the validity of the semi-classical approximation in
gravity is given. The criterion proposed is that solutions to the
semi-classical Einstein equations should be stable to linearized perturbations,
in the sense that no gauge invariant perturbation should become unbounded in
time. A self-consistent linear response analysis of these perturbations, based
upon an invariant effective action principle, necessarily involves metric
fluctuations about the mean semi-classical geometry, and brings in the
two-point correlation function of the quantum energy-momentum tensor in a
natural way. This linear response equation contains no state dependent
divergences and requires no new renormalization counterterms beyond those
required in the leading order semi-classical approximation. The general linear
response criterion is applied to the specific example of a scalar field with
arbitrary mass and curvature coupling in the vacuum state of Minkowski
spacetime. The spectral representation of the vacuum polarization function is
computed in n dimensional Minkowski spacetime, and used to show that the flat
space solution to the semi-classical Einstein equations for n=4 is stable to
all perturbations on distance scales much larger than the Planck length.Comment: 22 pages: This is a significantly expanded version of gr-qc/0204083,
with two additional sections and two new appendices giving a complete,
explicit example of the semi-classical stability criterion proposed in the
previous pape
Optical properties of MgH2 measured in situ in a novel gas cell for ellipsometry/spectrophotometry
The dielectric properties of alpha-MgH2 are investigated in the photon energy
range between 1 and 6.5 eV. For this purpose, a novel sample configuration and
experimental setup are developed that allow both optical transmission and
ellipsometric measurements of a transparent thin film in equilibrium with
hydrogen. We show that alpha-MgH2 is a transparent, colour neutral insulator
with a band gap of 5.6 +/- 0.1 eV. It has an intrinsic transparency of about
80% over the whole visible spectrum. The dielectric function found in this work
confirms very recent band structure calculations using the GW approximation by
Alford and Chou [J.A. Alford and M.Y. Chou (unpublished)]. As Pd is used as a
cap layer we report also the optical properties of PdHx thin films.Comment: REVTeX4, 15 pages, 12 figures, 5 table
- …