3,593 research outputs found

    Plurisubharmonic polynomials and bumping

    Full text link
    We wish to study the problem of bumping outwards a pseudoconvex, finite-type domain \Omega\subset C^n in such a way that pseudoconvexity is preserved and such that the lowest possible orders of contact of the bumped domain with bdy(\Omega), at the site of the bumping, are explicitly realised. Generally, when \Omega\subset C^n, n\geq 3, the known methods lead to bumpings with high orders of contact -- which are not explicitly known either -- at the site of the bumping. Precise orders are known for h-extendible/semiregular domains. This paper is motivated by certain families of non-semiregular domains in C^3. These families are identified by the behaviour of the least-weight plurisubharmonic polynomial in the Catlin normal form. Accordingly, we study how to perturb certain homogeneous plurisubharmonic polynomials without destroying plurisubharmonicity.Comment: 24 pages; corrected typos, fixed errors in Lemma 3.3; accepted for publication in Math.

    Most Complex Regular Right-Ideal Languages

    Get PDF
    A right ideal is a language L over an alphabet A that satisfies L = LA*. We show that there exists a stream (sequence) (R_n : n \ge 3) of regular right ideal languages, where R_n has n left quotients and is most complex under the following measures of complexity: the state complexities of the left quotients, the number of atoms (intersections of complemented and uncomplemented left quotients), the state complexities of the atoms, the size of the syntactic semigroup, the state complexities of the operations of reversal, star, and product, and the state complexities of all binary boolean operations. In that sense, this stream of right ideals is a universal witness.Comment: 19 pages, 4 figures, 1 tabl

    Ground state of a polydisperse electrorheological solid: Beyond the dipole approximation

    Full text link
    The ground state of an electrorheological (ER) fluid has been studied based on our recently proposed dipole-induced dipole (DID) model. We obtained an analytic expression of the interaction between chains of particles which are of the same or different dielectric constants. The effects of dielectric constants on the structure formation in monodisperse and polydisperse electrorheological fluids are studied in a wide range of dielectric contrasts between the particles and the base fluid. Our results showed that the established body-centered tetragonal ground state in monodisperse ER fluids may become unstable due to a polydispersity in the particle dielectric constants. While our results agree with that of the fully multipole theory, the DID model is much simpler, which offers a basis for computer simulations in polydisperse ER fluids.Comment: Accepted for publications by Phys. Rev.

    Large Aperiodic Semigroups

    Get PDF
    The syntactic complexity of a regular language is the size of its syntactic semigroup. This semigroup is isomorphic to the transition semigroup of the minimal deterministic finite automaton accepting the language, that is, to the semigroup generated by transformations induced by non-empty words on the set of states of the automaton. In this paper we search for the largest syntactic semigroup of a star-free language having nn left quotients; equivalently, we look for the largest transition semigroup of an aperiodic finite automaton with nn states. We introduce two new aperiodic transition semigroups. The first is generated by transformations that change only one state; we call such transformations and resulting semigroups unitary. In particular, we study complete unitary semigroups which have a special structure, and we show that each maximal unitary semigroup is complete. For n4n \ge 4 there exists a complete unitary semigroup that is larger than any aperiodic semigroup known to date. We then present even larger aperiodic semigroups, generated by transformations that map a non-empty subset of states to a single state; we call such transformations and semigroups semiconstant. In particular, we examine semiconstant tree semigroups which have a structure based on full binary trees. The semiconstant tree semigroups are at present the best candidates for largest aperiodic semigroups. We also prove that 2n12^n-1 is an upper bound on the state complexity of reversal of star-free languages, and resolve an open problem about a special case of state complexity of concatenation of star-free languages.Comment: 22 pages, 1 figure, 2 table

    Clifford algebras and universal sets of quantum gates

    Get PDF
    In this paper is shown an application of Clifford algebras to the construction of computationally universal sets of quantum gates for nn-qubit systems. It is based on the well-known application of Lie algebras together with the especially simple commutation law for Clifford algebras, which states that all basic elements either commute or anticommute.Comment: 4 pages, REVTeX (2 col.), low-level language corrections, PR

    Effective nonlinear optical properties of composite media of graded spherical particles

    Full text link
    We have developed a nonlinear differential effective dipole approximation (NDEDA), in an attempt to investigate the effective linear and third-order nonlinear susceptibility of composite media in which graded spherical inclusions with weak nonlinearity are randomly embedded in a linear host medium. Alternatively, based on a first-principles approach, we derived exactly the linear local field inside the graded particles having power-law dielectric gradation profiles. As a result, we obtain also the effective linear dielectric constant and third-order nonlinear susceptibility. Excellent agreement between the two methods is numerically demonstrated. As an application, we apply the NDEDA to investigate the surface plasma resonant effect on the optical absorption, optical nonlinearity enhancement, and figure of merit of metal-dielectric composites. It is found that the presence of gradation in metal particles yields a broad resonant band in the optical region, and further enhances the figure of merit.Comment: 20 pages, 5 figure

    On the Shuffle Automaton Size for Words

    Full text link
    We investigate the state size of DFAs accepting the shuffle of two words. We provide words u and v, such that the minimal DFA for u shuffled with v requires an exponential number of states. We also show some conditions for the words u and v which ensure a quadratic upper bound on the state size of u shuffled with v. Moreover, switching only two letters within one of u or v is enough to trigger the change from quadratic to exponential

    Schwinger model on a half-line

    Full text link
    We study the Schwinger model on a half-line in this paper. In particular, we investigate the behavior of the chiral condensate near the edge of the line. The effect of the chosen boundary condition is emphasized. The extension to the finite temperature case is straightforward in our approach.Comment: 4 pages, no figure. Final version to be published on Phys. Rev.

    Decoherence and Relaxation of a Quantum Bit in the Presence of Rabi Oscillations

    Full text link
    Dissipative dynamics of a quantum bit driven by a strong resonant field and interacting with a heat bath is investigated. We derive generalized Bloch equations and find modifications of the qubit's damping rates caused by Rabi oscillations. Nonequilibrium decoherence of a phase qubit inductively coupled to a LC-circuit is considered as an illustration of the general results. It is argued that recent experimental results give a clear evidence of effective suppression of decoherence in a strongly driven flux qubit.Comment: 14 pages; misprints correcte

    Theory of weak continuous measurements in a strongly driven quantum bit

    Full text link
    Continuous spectroscopic measurements of a strongly driven superconducting qubit by means of a high-quality tank circuit (a linear detector) are under study. Output functions of the detector, namely, a spectrum of voltage fluctuations and an impedance, are expressed in terms of the qubit spectrum and magnetic susceptibility. The nonequilibrium spectrum of the current fluctuations in the qubit loop and the linear response function of the driven qubit coupled to a heat bath are calculated with Bloch-Redfield and rotating wave approximations. Backaction effects of the qubit on the tank and the tank on the qubit are analyzed quantitatively. We show that the voltage spectrum of the tank provides detailed information about a frequency and a decay rate of Rabi oscillations in the qubit. It is found that both an efficiency of spectroscopic measurement and measurement-induced decoherence of the qubit demonstrate a resonant behaviour as the Rabi frequency approaches the resonant frequency of the tank. We determine conditions when the spectroscopic observation of the Rabi oscillations in the flux qubit with the tank circuit can be considered as a weak continuous quantum measurement.Comment: 28 page
    corecore