1 research outputs found
Theory of Current-Induced Magnetization Precession
We solve appropriate drift-diffusion and Landau-Lifshitz-Gilbert equations to
demonstrate that unpolarized current flow from a non-magnet into a ferromagnet
can produce a precession-type instability of the magnetization. The fundamental
origin of the instability is the difference in conductivity between majority
spins and minority spins in the ferromagnet. This leads to spin accumulation
and spin currents that carry angular momentum across the interface. The
component of this angular momentum perpendicular to the magnetization drives
precessional motion that is opposed by Gilbert damping. Neglecting magnetic
anisotropy and magnetostatics, our approximate analytic and exact numerical
solutions using realistic values for the material parameters show (for both
semi-infinite and thin film geometries) that a linear instability occurs when
both the current density and the excitation wave vector parallel to the
interface are neither too small nor too large. For many aspects of the problem,
the variation of the magnetization in the direction of the current flows makes
an important contribution.Comment: Submitted to Physical Review