37 research outputs found

    Functional Integral Approach to the Single Impurity Anderson Model

    Full text link
    Recently, a functional integral representation was proposed by Weller (Weller, W.: phys.~stat.~sol.~(b) {\bf 162}, 251 (1990)), in which the fermionic fields strictly satisfy the constraint of no double occupancy at each lattice site. This is achieved by introducing spin dependent Bose fields. The functional integral method is applied to the single impurity Anderson model both in the Kondo and mixed-valence regime. The f-electron Green's function and susceptibility are calculated using an Ising-like representation for the Bose fields. We discuss the difficulty to extract a spectral function from the knowledge of the imaginary time Green's function. The results are compared with NCA calculations.Comment: 11 pages, LaTeX, figures upon request, preprint No. 93/10/

    Multiple Extremal Eigenpairs by the Power Method

    Full text link
    We report the production and benchmarking of several refinements of the power method that enable the computation of multiple extremal eigenpairs of very large matrices. In these refinements we used an observation by Booth that has made possible the calculation of up to the 10th^{th} eigenpair for simple test problems simulating the transport of neutrons in the steady state of a nuclear reactor. Here, we summarize our techniques and efforts to-date on determining mainly just the two largest or two smallest eigenpairs. To illustrate the effectiveness of the techniques, we determined the two extremal eigenpairs of a cyclic matrix, the transfer matrix of the two-dimensional Ising model, and the Hamiltonian matrix of the one-dimensional Hubbard model.Comment: 29 papes, no figure

    Magnetic and Dynamic Properties of the Hubbard Model in Infinite Dimensions

    Full text link
    An essentially exact solution of the infinite dimensional Hubbard model is made possible by using a self-consistent mapping of the Hubbard model in this limit to an effective single impurity Anderson model. Solving the latter with quantum Monte Carlo procedures enables us to obtain exact results for the one and two-particle properties of the infinite dimensional Hubbard model. In particular we find antiferromagnetism and a pseudogap in the single-particle density of states for sufficiently large values of the intrasite Coulomb interaction at half filling. Both the antiferromagnetic phase and the insulating phase above the N\'eel temperature are found to be quickly suppressed on doping. The latter is replaced by a heavy electron metal with a quasiparticle mass strongly dependent on doping as soon as n<1n<1. At half filling the antiferromagnetic phase boundary agrees surprisingly well in shape and order of magnitude with results for the three dimensional Hubbard model.Comment: 32 page

    Pairing, Charge, and Spin Correlations in the Three-Band Hubbard Model

    Full text link
    Using the Constrained Path Monte Carlo (CPMC) method, we simulated the two-dimensional, three-band Hubbard model to study pairing, charge, and spin correlations as a function of electron and hole doping and the Coulomb repulsion VpdV_{pd} between charges on neighboring Cu and O lattice sites. As a function of distance, both the dx2y2d_{x^2 - y^2}-wave and extended s-wave pairing correlations decayed quickly. In the charge-transfer regime, increasing VpdV_{pd} decreased the long-range part of the correlation functions in both channels, while in the mixed-valent regime, it increased the long-range part of the s-wave behavior but decreased that of the d-wave behavior. Still the d-wave behavior dominated. At a given doping, increasing VpdV_{pd} increased the spin-spin correlations in the charge-transfer regime but decreased them in the mixed-valent regime. Also increasing VpdV_{pd} suppressed the charge-charge correlations between neighboring Cu and O sites. Electron and hole doping away from half-filling was accompanied by a rapid suppression of anti-ferromagnetic correlations.Comment: Revtex, 8 pages with 15 figure

    Disorder Induced Phase Transition in a Random Quantum Antiferromagnet

    Full text link
    A two-dimensional Heisenberg model with random antiferromagnetic nearest-neighbor exchange is studied using quantum Monte Carlo techniques. As the strength of the randomness is increased, the system undergoes a transition from an antiferromagnetically ordered ground state to a gapless disordered state. The finite-size scaling of the staggered structure factor and susceptibility is consistent with a dynamic exponent z=2z = 2.Comment: Revtex 3.0, 10 pages + 5 postscript figures available upon request, UCSBTH-94-1

    Low-temperature dynamical simulation of spin-boson systems

    Full text link
    The dynamics of spin-boson systems at very low temperatures has been studied using a real-time path-integral simulation technique which combines a stochastic Monte Carlo sampling over the quantum fluctuations with an exact treatment of the quasiclassical degrees of freedoms. To a large degree, this special technique circumvents the dynamical sign problem and allows the dynamics to be studied directly up to long real times in a numerically exact manner. This method has been applied to two important problems: (1) crossover from nonadiabatic to adiabatic behavior in electron transfer reactions, (2) the zero-temperature dynamics in the antiferromagnetic Kondo region 1/2<K<1 where K is Kondo's parameter.Comment: Phys. Rev. B (in press), 28 pages, 6 figure

    History of clinical transplantation

    Get PDF
    How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York
    corecore