12 research outputs found

    Vitellogenin B2 gene in Xenopus laevis: isolation, in vitro transcription and relation to other vitellogenin genes.

    No full text
    The isolation of the four Xenopus laevis vitellogenin genes has been completed by the purification from a DNA library of the B2 gene together with its flanking sequences. The overlapping DNA fragments analyzed cover 34 kilobases. The B2 gene which has a length of 17.5 kilobases was characterized by heteroduplex and R-loop mapping in the electron microscope and by in vitro transcription in a HeLa whole-cell extract. Its structural organization is compared with that of the closely related B1 gene. The mRNA-coding sequence of about 6 kilobases is interrupted 34 times in the B1 gene and 33 times in the B2 gene. Sequence homology between the two genes was not only found in exons. In addition, 54% of the intron sequences as well as 63% and 48.5% respectively of the 5' and 3' flanking sequences, show enough homology to form stable duplexes. These findings are compared with earlier results obtained with the two other closely related members of the vitellogenin gene family, the A1 and the A2 genes

    Identification of two steroid-responsive promoters of different strength controlled by the same estrogen-responsive element in the 5'-end region of the Xenopus laevis vitellogenin gene A1.

    No full text
    A structural and functional analysis of the 5'-end region of the Xenopus laevis vitellogenin gene A1 revealed two transcription initiation sites located 1.8 kilobases apart. A RNA polymerase II binding assay indicates that both promoters form initiation complexes efficiently. In vitro, using a transcription assay derived from a HeLa whole-cell extract, the upstream promoter is more than 10-fold stronger than the downstream one. In contrast, both promoters have a similar strength in a HeLa nuclear extract. In vivo, that is in estrogen-stimulated hepatocytes, it is the downstream promoter homologous to the one used by the other members of the vitellogenin gene family, which is 50-fold stronger than the upstream promoter. Thus, if functional vitellogenin mRNA results from this latter activity, it would contribute less than 1% to the synthesis of vitellogenin by fully induced Xenopus hepatocytes expressing the four vitellogenin genes. In contrast, both gene A1 promoters are silent in uninduced hepatocytes. Transfection experiments using the Xenopus cell line B3.2 in which estrogen-responsiveness has been introduced reveal that the strong downstream promoter is controlled by an estrogen responsive element (ERE) located 330 bp upstream of it. The upstream promoter can also be controlled by the same ERE. Since the region comprising the upstream promoter is flanked by a 200 base pair long inverted repeat with stretches of homology to other regions of the X. laevis genome, we speculate that it might have been inserted upstream of the vitellogenin gene A1 by a recombination event and consequently brought under control of the ERE lying 1.5 kilobases downstream
    corecore