55 research outputs found

    Postconditioning protects against endothelial ischemia-reperfusion injury in the human forearm

    Get PDF
    Background: Hypoxic cell death follows interruption of blood supply to tissues. Although successful restoration of blood flow is mandatory for salvage of ischemic tissues, reperfusion can paradoxically place tissues at risk of further injury. Brief periods of ischemia applied at the onset of reperfusion have been shown to reduce ischemia-reperfusion (IR) injury, a phenomenon called postconditioning. The aim of this study was to determine whether postconditioning protects against endothelial IR injury in humans, in vivo. Methods and Results: Brachial artery endothelial function was assessed by vascular ultrasound to measure flow-mediated dilation (FMD) in response to forearm reactive hyperemia. FMD was measured before and after IR (20 minutes of arm ischemia followed by 20 minutes of reperfusion) in healthy volunteers. To test the protective effects of postconditioning, 3 cycles of reperfusion followed by ischemia (each lasting 10 or 30 seconds) were applied immediately after 20 minutes of arm ischemia. To determine whether postconditioning needs to be applied at the onset of reperfusion, a 1-minute period of arm reperfusion was allowed before the application of the 10-second postconditioning stimulus. IR caused endothelial dysfunction (FMD 9.1±1.2% pre-IR, 3.6±0.7% post-IR, P<0.001; n=11), which was prevented by postconditioning applied as 10-second cycles of reperfusion/ischemia (FMD 9.9±1.7% pre-IR, 8.3±1.4% post-IR, P=NS; n=11) and 30-second cycles of reperfusion/ischemia (FMD 10.8±1.7% pre-IR, 9.5±1.5% post-IR, P=NS; n=10) immediately at the onset of reperfusion. No protection was observed when the application of the 10-second postconditioning stimulus was delayed for 1 minute after the onset of reperfusion (FMD 9.8±1.2% pre-IR, 4.0±0.9% post-IR, P<0.001; n=8). Conclusions: This study demonstrates for the first time that postconditioning can protect against endothelial IR injury in humans. Postconditioning might reduce tissue injury when applied at the onset of reperfusion by modifying the reperfusion phase of IR

    Remote Ischemic Preconditioning Protects the Brain Against Injury After Hypothermic Circulatory Arrest

    Get PDF
    Background-Ischemic preconditioning (IPC) is a mechanism protecting tissues from injury during ischemia and reperfusion. Remote IPC (RIPC) can be elicited by applying brief periods of ischemia to tissues with ischemic tolerance, thus protecting vital organs more susceptible to ischemic damage. Using a porcine model, we determined whether RIPC of the limb is protective against brain injury caused by hypothermic circulatory arrest (HCA).Methods and Results-Twelve piglets were randomized to control and RIPC groups. RIPC was induced in advance of cardiopulmonary bypass by 4 cycles of 5 minutes of ischemia of the hind limb. All animals underwent cardiopulmonary bypass followed by 60 minutes of HCA at 18 degrees C. Brain metabolism and electroencephalographic activity were monitored for 8 hours after HCA. Assessment of neurological status was performed for a week postoperatively. Finally, brain tissue was harvested for histopathological analysis.Study groups were balanced for baseline and intraoperative parameters. Brain lactate concentration was significantly lower (P < 0.0001, ANOVA) and recovery of electroencephalographic activity faster (P < 0.05, ANOVA) in the RIPC group. RIPC had a beneficial effect on neurological function during the 7-day follow-up (behavioral score; P < 0.0001 versus control, ANOVA). Histopathological analysis demonstrated a significant reduction in cerebral injury in RIPC animals (injury score; mean [interquartile range]: control 5.8 [3.8 to 7.5] versus RIPC 1.5 [0.5 to 2.5], P < 0.001, t test).Conclusions-These data demonstrate that RIPC protects the brain against HCA-induced injury, resulting in accelerated recovery of neurological function. RIPC might be neuroprotective in patients undergoing surgery with HCA and improve long-term outcomes. Clinical trials to test this hypothesis are warranted. (Circulation. 2011; 123: 714-721.

    Endothelial cell function testing: How does the method help us in evaluating vascular status?

    No full text
    Vascular endothelial dysfunction describes a phenotype prone to atherogenesis and clinical complications of this disease process. Endothelium-dependent vasodilator function, reflecting local bioavailability of nitric oxide, can be measured clinically in the peripheral and coronary circulation and corresponds with other measures of endothelial biology including inflammatory status and thrombotic tendency. Although conventional risk factors are key determinants of endothelial dysfunction, many other factors, including the individual's genetic profile, also appear to exert important positive and negative functional influences. Thus, endothelial vasodilator function can be regarded as an integrated index of all atherogenic and atheroprotective factors acting on the vascular wall, reflecting underlying biology and inherent atherosclerotic risk. The potential clinical utility of endothelial vasomotor testing as a prognostic tool in risk assessment and for the monitoring of therapy requires further validation before recommending its wider routine use

    Total ischaemic burden

    No full text

    Endothelial function predicts progression of carotid intima-media thickness

    No full text
    Background - Endothelial dysfunction develops early and has been shown to predict the development of clinical complications of atherosclerosis. However, the relationship between early endothelial dysfunction and the progression of arterial disease in the general population is unknown. We investigated endothelial dysfunction, risk factors, and progression of carotid intima-media thickness (cIMT) in late-middle-aged individuals at low to intermediate cardiovascular risk in a prospective study between 1997 and 2005. Methods and Results - Brachial artery flow-mediated dilatation and cIMT were measured in 213 nonsmoking British civil servants recruited from a prospective cohort (Whitehall II study). Participants (age, 45 to 66 years) were free of clinical cardiovascular disease and diabetes mellitus. Risk factors and Framingham Risk Score were determined at baseline. cIMT was repeated 6.2 ±0.4 years later. At baseline, age, blood pressure, low-density lipoprotein cholesterol, and Framingham Risk Score correlated with cIMT. However, only flow-mediated dilatation, not risk factors or Framingham Risk Score, was associated with average annual progression of cIMT. This relationship remained significant after adjustment for risk factors whether entered as separate variables or as Framingham Risk Score. Further adjustment for waist circumference, triglycerides, and employment grade had no significant effect. Conclusions - Systemic endothelial function was associated with progression of preclinical carotid arterial disease over a 6-year period and was more closely related to cIMT changes than conventional risk factors. Thus, the relationship between endothelial dysfunction and adverse outcome is likely to be due not only to destabilization of established disease in high-risk populations but also to its impact on the evolution of the atherosclerotic substrate. How-mediated dilatation testing provides an integrated vascular measure that may aid the prediction of structural disease evolution and represents a potential short- to intermediate-term outcome measure for evaluation of preventive treatment strategies. © 2009 American Heart Association, Inc
    • …
    corecore