4 research outputs found

    Computational steering in realitygrid

    Get PDF
    The RealityGrid project (http://www.realitygrid.org) aims both to enable the discovery of new materials through integrated experiments and to understand the behaviour of physical systems based on the properties of their microscopic components using diverse simulation methods spanning many time and length scales. A central theme of RealityGrid is the facilitation of distributed and collaborative steering of parallel simulation codes and simultaneous on-line, high-end visualisation. In this paper, we review the motivations for computational steering and introduce the RealityGrid steering library and associated software. We then outline the capabilities of the library and describe the service-oriented architecture of the latest implementation, in which the steering controls of the application are exposed through an OGSI-compliant Grid service

    The TeraGyroid Experiment

    Get PDF
    The TeraGyroid experiment at SC 03 addressed a large-scale problem of genuine scientific interest at the same time as showing how intercontinental grids enable new paradigms for collaborative computational science that can dramatically reduce the time to insight. TeraGyroid used computational steering to accelerate the exploration of parameter space in condensed matter simulations. The scientific objective was to study the self-assembly, defect pathways and dynamics of liquid crystalline cubic gyroid mesophases using the largest set of lattice-Boltzmann (LB) simulations ever performed, involving in some cases lattices of over one billion sites and for highly extended simulation times. We describe the application in sufficient detail to reveal how it uses the grid to support interactions between its distributed parts, where the interfaces exist between the application and the middleware infrastructure, what grid services and capabilities are used, and why important design decisions were made. We also describe how the resources of highend computing services were federated with the UK e-Science Grid and the US TeraGrid to form the TeraGyroid testbed, and summarise the lessons learned during the experiment
    corecore