8 research outputs found
Activation of Mitogen-activated Protein Kinase (Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase) Cascade by Aldosterone
Aldosterone in some tissues increases expression of the mRNA encoding the small monomeric G protein Ki-RasA. Renal A6 epithelial cells were used to determine whether induction of Ki-ras leads to concomitant increases in the total as well as active levels of Ki-RasA and whether this then leads to subsequent activation of its effector mitogen-activated protein kinase (MAPK/extracellular signal-regulated kinase) cascade. The molecular basis and cellular consequences of this action were specifically investigated. We identified the intron 1-exon 1 region (rasI/E1) of the mouse Ki-ras gene as sufficient to reconstitute aldosterone responsiveness to a heterologous promotor. Aldosterone increased reporter gene activity containing rasI/E1 threefold. Aldosterone increased the absolute and GTP-bound levels of Ki-RasA by a similar extent, suggesting that activation resulted from mass action and not effects on GTP binding/hydrolysis rates. Aldosterone significantly increased Ki-RasA and MAPK activity as early as 15 min with activation peaking by 2 h and waning after 4 h. Inhibitors of transcription, translation, and a glucocorticoid receptor antagonist attenuated MAPK signaling. Similarly, rasI/E1-driven luciferase expression was sensitive to glucocorticoid receptor blockade. Overexpression of dominant-negative RasN17, addition of antisense Ki-rasA and inhibition of mitogen-activated protein kinase kinase also attenuated steroid-dependent increases in MAPK signaling. Thus, activation of MAPK by aldosterone is dependent, in part, on a genomic mechanism involving induction of Ki-ras transcription and subsequent activation of its downstream effectors. This genomic mechanism has a distinct time course from activation by traditional mitogens, such as serum, which affect the GTP-binding state and not absolute levels of Ras. The result of such a genomic mechanism is that peak activation of the MAPK cascade by adrenal corticosteroids is delayed but prolonged
Methylation increases the open probability of the epithelial sodium channel in A6 epithelia
We used single channel methods on A6 renal cells to study the regulation by methylation reactions of epithelial sodium channels. 3-Deazaadenosine (3- DZA), a methyltransferase blocker, produced a 5-fold decrease in sodium transport and a 6-fold decrease in apical sodium channel activity by decreasing channel open probability (P(o)). 3-Deazaadenosine also blocked the increase in channel open probability associated with addition of aldosterone. Sodium channel activity in excised 'inside-out' patches usually decreased within 1-2 min; in the presence of S-adenosyl-L-methionine (AdoMet), activity persisted for 5-8 min. Sodium channel mean time open (t(open)) before and after patch excision was higher in the presence of AdoMet than in untreated excised patches but less than t(open) in cell-attached patches. Sodium channel activity in excised patches exposed to both AdoMet and GTP usually remained stable for more than 10 min, and P(o) and the number of active channels per patch were close to values in cell-attached patches from untreated cells. These findings suggest that a methylation reaction contributes to the activity of epithelial sodium channels in A6 cells and is directed to some regulatory element closely connected with the channel, whose activity also depends on the presence of intracellular GTP.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
Isoprenylcysteine-O-carboxyl methyltransferase regulates aldosterone- sensitive Na+ reabsorption
The Xenopus laevis distal tubule epithelial cell line A6 was used as a model epithelia to study the role of isoprenylcysteine-O-carboxyl methyltransferase (pcMTase) in aldosterone-mediated stimulation of Na+ transport. Polyclonal antibodies raised against X. laevis pcMTase were immunoreactive with a 33-kDa protein in whole cell lysate. These antibodies were also reactive with a 33-kDa product from in vitro translation of the pcMTase cDNA. Aldosterone application increased pcMTase activity resulting in elevation of total protein methyl esterification in vivo, but pcMTase protein levels were not affected by steroid, suggesting that aldosterone increased activity independent of enzyme number. Inhibition of pcMTase resulted in a reduction of aldosterone-induced Na+ transport demonstrating the necessity of pcMTase-mediated transmethylation for steroid induced Na+ reabsorption. Transfection with an eukaryotic expression construct containing pcMTase cDNA increased pcMTase protein level and activity. This resulted in potentiation of the natriferic actions of aldosterone. However, overexpression did not change Na+ reabsorption in the absence of steroid, suggesting that pcMTase activity is not limiting Na+ transport in the absence of steroid, but that subsequent to aldosterone addition, pcMTase activity becomes limiting. These results suggest that a critical transmethylation is necessary for aldosterone-induction of Na+ transport. It is likely that the protein catalyzing this methylation is isoprenylcysteine-O-carboxyl methyltransferase and that aldosterone activates pcMTase without affecting transferase expression.SCOPUS: ar.jinfo:eu-repo/semantics/publishe