107 research outputs found

    Novel glassy behavior in a ferromagnetic p-spin model

    Full text link
    Recent work has suggested the existence of glassy behavior in a ferromagnetic model with a four-spin interaction. Motivated by these findings, we have studied the dynamics of this model using Monte Carlo simulations with particular attention being paid to two-time quantities. We find that the system shares many features in common with glass forming liquids. In particular, the model exhibits: (i) a very long-lived metastable state, (ii) autocorrelation functions that show stretched exponential relaxation, (iii) a non-equilibrium timescale that appears to diverge at a well defined temperature, and (iv) low temperature aging behaviour characteristic of glasses.Comment: 6 pages, 5 figure

    Persistence in higher dimensions : a finite size scaling study

    Full text link
    We show that the persistence probability P(t,L)P(t,L), in a coarsening system of linear size LL at a time tt, has the finite size scaling form P(t,L)∼L−zθf(tLz)P(t,L)\sim L^{-z\theta}f(\frac{t}{L^{z}}) where θ\theta is the persistence exponent and zz is the coarsening exponent. The scaling function f(x)∼x−θf(x)\sim x^{-\theta} for x≪1x \ll 1 and is constant for large xx. The scaling form implies a fractal distribution of persistent sites with power-law spatial correlations. We study the scaling numerically for Glauber-Ising model at dimension d=1d = 1 to 4 and extend the study to the diffusion problem. Our finite size scaling ansatz is satisfied in all these cases providing a good estimate of the exponent θ\theta.Comment: 4 pages in RevTeX with 6 figures. To appear in Phys. Rev.

    Tensionless structure of glassy phase

    Full text link
    We study a class of homogeneous finite-dimensional Ising models which were recently shown to exhibit glassy properties. Monte Carlo simulations of a particular three-dimensional model in this class show that the glassy phase obtained under slow cooling is dominated by large scale excitations whose energy ElE_l scales with their size ll as El∼lΘE_l\sim l^{\Theta} with Θ∼1.33(5)\Theta\sim 1.33(5). Simulations suggest that in another model of this class, namely the four-spin model, energy is concentrated mainly in linear defects making also in this case domain walls tensionless. Two-dimensinal variants of these models are trivial and energy of excitations scales with the exponent Θ=1.05(5)\Theta=1.05(5).Comment: 5 page

    Absence of Dipole Transitions in Vortices of Type II Superconductors

    Full text link
    The response of a single vortex to a time dependent field is examined microscopically and an equation of motion for vortex motion at non-zero frequencies is derived. Of interest are frequencies near Δ2/EF\Delta^{2}/E_{F}, where Δ\Delta is the bulk energy gap and EFE_{F} is the fermi energy. The low temperature, clean, extreme type II limit and maintaining of equilibrium with the lattice are assumed. A simplification occurs for large planar mass anisotropy. Thus the results may be pertinent to materials such as NbSe2NbSe_2 and high temperature superconductors. The expected dipole transition between core states is hidden because of the self consistent nature of the vortex potential. Instead the vortex itself moves and has a resonance at the frequency of the transition.Comment: 12 pages, no figure

    SO(5) theory of insulating vortex cores in high-TcT_c materials

    Full text link
    We study the fermionic states of the antiferromagnetically ordered vortex cores predicted to exist in the superconducting phase of the newly proposed SO(5) model of strongly correlated electrons. Our model calculation gives a natural explanation of the recent STM measurements on BSCCO, which in surprising contrast to YBCO revealed completely insulating vortex cores.Comment: 4 pages, 1 figur

    Crystallization of a supercooled liquid and of a glass - Ising model approach

    Full text link
    Using Monte Carlo simulations we study crystallization in the three-dimensional Ising model with four-spin interaction. We monitor the morphology of crystals which grow after placing crystallization seeds in a supercooled liquid. Defects in such crystals constitute an intricate and very stable network which separate various domains by tensionless domain walls. We also show that the crystallization which occurs during the continuous heating of the glassy phase takes place at a heating-rate dependent temperature.Comment: 7 page

    Slow dynamics in the 3--D gonihedric model

    Full text link
    We study dynamical aspects of three--dimensional gonihedric spins by using Monte--Carlo methods. The interest of this family of models (parametrized by one self-avoidance parameter κ\kappa) lies in their capability to show remarkably slow dynamics and seemingly glassy behaviour below a certain temperature TgT_g without the need of introducing disorder of any kind. We consider first a hamiltonian that takes into account only a four--spin term (κ=0\kappa=0), where a first order phase transition is well established. By studying the relaxation properties at low temperatures we confirm that the model exhibits two distinct regimes. For Tg<T<TcT_g< T < T_c, with long lived metastability and a supercooled phase, the approach to equilibrium is well described by a stretched exponential. For T<TgT<T_g the dynamics appears to be logarithmic. We provide an accurate determination of TgT_g. We also determine the evolution of particularly long lived configurations. Next, we consider the case κ=1\kappa=1, where the plaquette term is absent and the gonihedric action consists in a ferromagnetic Ising with fine-tuned next-to-nearest neighbour interactions. This model exhibits a second order phase transition. The consideration of the relaxation time for configurations in the cold phase reveals the presence of slow dynamics and glassy behaviour for any T<TcT< T_c. Type II aging features are exhibited by this model.Comment: 13 pages, 12 figure

    A Field-theoretical Interpretation of the Holographic Renormalization Group

    Get PDF
    A quantum-field theoretical interpretation is given to the holographic RG equation by relating it to a field-theoretical local RG equation which determines how Weyl invariance is broken in a quantized field theory. Using this approach we determine the relation between the holographic C theorem and the C theorem in two-dimensional quantum field theory which relies on the Zamolodchikov metric. Similarly we discuss how in four dimensions the holographic C function is related to a conjectured field-theoretical C function. The scheme dependence of the holographic RG due to the possible presence of finite local counterterms is discussed in detail, as well as its implications for the holographic C function. We also discuss issues special to the situation when mass deformations are present. Furthermore we suggest that the holographic RG equation may also be obtained from a bulk diffeomorphism which reduces to a Weyl transformation on the boundary.Comment: 24 pages, LaTeX, no figures; references added, typos corrected, paragraph added to section

    Aging without disorder on long time scales

    Full text link
    We study the Metropolis dynamics of a simple spin system without disorder, which exhibits glassy dynamics at low temperatures. We use an implementation of the algorithm of Bortz, Kalos and Lebowitz \cite{bortz}. This method turns out to be very efficient for the study of glassy systems, which get trapped in local minima on many different time scales. We find strong evidence of aging effects at low temperatures. We relate these effects to the distribution function of the trapping times of single configurations.Comment: 8 pages Revtex, 7 figures uuencoded (Revised version: the figures are now present
    • …
    corecore