3 research outputs found

    Generalised parton distributions at small x

    Full text link
    We justify the practical use of the Shuvaev integral transform approach to calculate the skewed distributions, needed to describe diffractive processes, directly from the conventional diagonal global parton distributions. We address doubts which have been raised about this procedure. We emphasise that the approach, on the one hand, satisfies all theoretical reqirements, and, on the other hand, is consistent with DVCS data at NLO. We construct an easily accessible package for the computation of these skewed distributions.Comment: 21 pages, 10 figures. New title. Extra Fig. 2 and extra Section 5 to compare with alternative treatment of GPDs. Numerical results unchanged. To be published in EPJ

    Sum rules and dualities for generalized parton distributions: is there a holographic principle?

    Full text link
    To leading order approximation, the physical content of generalized parton distributions (GPDs) that is accessible in deep virtual electroproduction of photons or mesons is contained in their value on the cross-over trajectory. This trajectory separates the t-channel and s-channel dominated GPD regions. The underlying Lorentz covariance implies correspondence between these two regions through their relation to GPDs on the cross-over trajectory. This point of view leads to a family of GPD sum rules which are a quark analogue of finite energy sum rules and it guides us to a new phenomenological GPD concept. As an example, we discuss the constraints from the JLab/Hall A data on the dominant u-quark GPD H. The question arises whether GPDs are governed by some kind of holographic principle.Comment: 45 pages, 4 figures, Sect. 2 reorganized for clarity. Typos in Eq. (20) corrected. 4 new refs. Matches published versio

    GPD phenomenology and DVCS fitting

    No full text
    We review the phenomenological framework for accessing Generalized Parton Distributions (GPDs) using measurements of Deeply Virtual Compton Scattering (DVCS) from a proton target. We describe various GPD models and fitting procedures, emphasizing specific challenges posed both by the internal structure and properties of the GPD functions and by their relation to observables. Bearing in mind forthcoming data of unprecedented accuracy, we give a set of recommendations to better define the pathway for a precise extraction of GPDs from experiment.Comment: 32 pages, 10 figures, contribution to the EPJA topical issue on 3D Structure of the Nucleo
    corecore