142 research outputs found

    Cosmological Variation of the Fine Structure Constant from an Ultra-Light Scalar Field: The Effects of Mass

    Full text link
    Cosmological variation of the fine structure constant α\alpha due to the evolution of a spatially homogeneous ultra-light scalar field (m∼H0m \sim H_0) during the matter and Λ\Lambda dominated eras is analyzed. Agreement of Δα/α\Delta \alpha/\alpha with the value suggested by recent observations of quasar absorption lines is obtained by adjusting a single parameter, the coupling of the scalar field to matter. Asymptotically α(t)\alpha(t) in this model goes to a constant value αˉ≈α0\bar{\alpha} \approx \alpha_0 in the early radiation and the late Λ\Lambda dominated eras. The coupling of the scalar field to (nonrelativistic) matter drives α\alpha slightly away from αˉ\bar{\alpha} in the epochs when the density of matter is important. Simultaneous agreement with the more restrictive bounds on the variation ∣Δα/α∣|\Delta \alpha/\alpha| from the Oklo natural fission reactor and from meteorite samples can be achieved if the mass of the scalar field is on the order of 0.5--0.6 HΛH_\Lambda, where HΛ=ΩΛ1/2H0H_\Lambda = \Omega_\Lambda^{1/2} H_0. Depending on the scalar field mass, α\alpha may be slightly smaller or larger than α0\alpha_0 at the times of big bang nucleosynthesis, the emission of the cosmic microwave background, the formation of early solar system meteorites, and the Oklo reactor. The effects on the evolution of α\alpha due to nonzero mass for the scalar field are emphasized. An order of magnitude improvement in the laboratory technique could lead to a detection of (α˙/α)0(\dot{\alpha}/\alpha)_0.Comment: 22 pages, 15 figures Version 2: The Oklo event is now considered as localized in time. The initial conditions for the scalar field have been refined. The numbers in the Table have been recomputed. Added Ref

    Boson-fermion unification, superstrings, and Bohmian mechanics

    Full text link
    Bosonic and fermionic particle currents can be introduced in a more unified way, with the cost of introducing a preferred spacetime foliation. Such a unified treatment of bosons and fermions naturally emerges from an analogous superstring current, showing that the preferred spacetime foliation appears only at the level of effective field theory, not at the fundamental superstring level. The existence of the preferred spacetime foliation allows an objective definition of particles associated with quantum field theory in curved spacetime. Such an objective definition of particles makes the Bohmian interpretation of particle quantum mechanics more appealing. The superstring current allows a consistent Bohmian interpretation of superstrings themselves, including a Bohmian description of string creation and destruction in terms of string splitting. The Bohmian equations of motion and the corresponding probabilistic predictions are fully relativistic covariant and do not depend on the preferred foliation.Comment: 30 pages, 1 figure, revised, to appear in Found. Phy

    New Solution of D=11 Supergravity on S^7 from D=4

    Full text link
    A new static partially twisted solution of N=4, SO(4) gauged supergravity in D=11 is obtained in this work using Cveti\^c et al embedding of four dimensional into eleven dimensional supergravities. In four dimensions we get two solutions: an asymptotic one corresponding to AdS4AdS_4 and a near horizon fixed point solution of the form AdS2×H2AdS_2\times H_2. Hence, while the former solution has 32 supercharges the latter turns out to have only 4 conserved. Moreover, we managed to find an exact interpolating solution, thus connecting the above two. Aiming at a future study of AdS/CFTAdS/CFT duality for the theory at hand we derived the Penrose limit of the four dimensional solutions. Interestingly the pp-wave limit of the near horizon solution suggests itself as being of the supernumerary supersymmetric type. In D=11 we exhibit the uplift of the four dimensional solutions: one associated to AdS4×S7AdS_4\times S^7 and the other to a foliation of AdS2×H2×S7AdS_2\times H_2 \times S^7, as well as their pp-wave limits.Comment: 14 pages, LaTe

    Chiral rings, anomalies and loop equations in N=1* gauge theories

    Full text link
    We examine the equivalence between the Konishi anomaly equations and the matrix model loop equations in N=1* gauge theories, the mass deformation of N=4 supersymmetric Yang-Mills. We perform the superfunctional integral of two adjoint chiral superfields to obtain an effective N=1 theory of the third adjoint chiral superfield. By choosing an appropriate holomorphic variation, the Konishi anomaly equations correctly reproduce the loop equations in the corresponding three-matrix model. We write down the field theory loop equations explicitly by using a noncommutative product of resolvents peculiar to N=1* theories. The field theory resolvents are identified with those in the matrix model in the same manner as for the generic N=1 gauge theories. We cover all the classical gauge groups. In SO/Sp cases, both the one-loop holomorphic potential and the Konishi anomaly term involve twisting of index loops to change a one-loop oriented diagram to an unoriented diagram. The field theory loop equations for these cases show certain inhomogeneous terms suggesting the matrix model loop equations for the RP2 resolvent.Comment: 23 pages, 3 figures, latex2e, v4: minor changes in introduction and conclusions, 4 references are added, version to appear in JHE

    Universally Coupled Massive Gravity, II: Densitized Tetrad and Cotetrad Theories

    Full text link
    Einstein's equations in a tetrad formulation are derived from a linear theory in flat spacetime with an asymmetric potential using free field gauge invariance, local Lorentz invariance and universal coupling. The gravitational potential can be either covariant or contravariant and of almost any density weight. These results are adapted to produce universally coupled massive variants of Einstein's equations, yielding two one-parameter families of distinct theories with spin 2 and spin 0. The theories derived, upon fixing the local Lorentz gauge freedom, are seen to be a subset of those found by Ogievetsky and Polubarinov some time ago using a spin limitation principle. In view of the stability question for massive gravities, the proven non-necessity of positive energy for stability in applied mathematics in some contexts is recalled. Massive tetrad gravities permit the mass of the spin 0 to be heavier than that of the spin 2, as well as lighter than or equal to it, and so provide phenomenological flexibility that might be of astrophysical or cosmological use.Comment: 2 figures. Forthcoming in General Relativity and Gravitatio

    D-Brane Probes of Special Holonomy Manifolds

    Get PDF
    Using D2-brane probes, we study various properties of M-theory on singular, non-compact manifolds of G_2 and Spin(7) holonomy. We derive mirror pairs of N=1 supersymmetric three-dimensional gauge theories, and apply this technique to realize exceptional holonomy manifolds as both Coulomb and Higgs branches of the D2-brane world-volume theory. We derive a ``G_2 quotient construction'' of non-compact manifolds which admit a metric of G_2 holonomy. We further discuss the moduli space of such manifolds, including the structure of geometrical transitions in each case. For completeness, we also include familiar examples of manifolds with SU(3) and Sp(2) holonomy, where some of the new ideas are clarified and tested.Comment: 79 pages, Late

    Supersymmetry, G-flux and Spin(7) manifolds

    Get PDF
    In this note we study warped compactifications of M-theory on manifolds of Spin(7) holonomy in the presence of background 4-form flux. The explicit form of the superpotential can be given in terms of the self -dual Cayley calibration on the Spin(7) manifold, in agreement with the general formula propsed in hep-th/9911011

    Interactive effects of light, leaf temperature, CO 2 and O 2 on photosynthesis in soybean

    Full text link
    A biochemical model of C 3 photosynthesis has been developed by G.D. Farquhar et al. (1980, Planta 149, 78–90) based on Michaelis-Menten kinetics of ribulose-1,5-bisphosphate (RuBP) carboxylase-oxygenase, with a potential RuBP limitation imposed via the Calvin cycle and rates of electron transport. The model presented here is slightly modified so that parameters may be estimated from whole-leaf gas-exchange measurements. Carbon-dioxide response curves of net photosynthesis obtained using soybean plants ( Glycine max (L.) Merr.) at four partial pressures of oxygen and five leaf temperatures are presented, and a method for estimating the kinetic parameters of RuBP carboxylase-oxygenase, as manifested in vivo, is discussed. The kinetic parameters so obtained compare well with kinetic parameters obtained in vitro, and the model fits to the measured data give r 2 values ranging from 0.87 to 0.98. In addition, equations developed by J.D. Tenhunen et al. (1976, Oecologia 26, 89–100, 101–109) to describe the light and temperature responses of measured CO 2 -saturated photosynthetic rates are applied to data collected on soybean. Combining these equations with those describing the kinetics of RuBP carboxylase-oxygenase allows one to model successfully the interactive effects of incident irradiance, leaf temperature, CO 2 and O 2 on whole-leaf photosynthesis. This analytical model may become a useful tool for plant ecologists interested in comparing photosynthetic responses of different C 3 plants or of a single species grown in contrasting environments.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47469/1/425_2004_Article_BF00395048.pd

    Radioimmunotherapy of B-cell lymphoma with radiolabelled anti-CD20 monoclonal antibodies

    Get PDF
    CD20 has proven to be an excellent target for the treatment of B-cell lymphoma, first for the chimeric monoclonal antibody rituximab (Rituxan™), and more recently for the radiolabelled antibodies Y-90 ibritumomab tiuxetan (Zevalin™) and I-131 tositumomab (Bexxar™). Radiation therapy effects are due to beta emissions with path lengths of 1–5 mm; gamma radiation emitted by I-131 is the only radiation safety issue for either product. Dose-limiting toxicity for both radiolabelled antibodies is reversible bone marrow suppression. They produce response rates of 70%–90% in low-grade and follicular lymphoma and 40%–50% in transformed low-grade or intermediate-grade lymphomas. Both products produce higher response rates than related unlabelled antibodies, and both are highly active in patients who are relatively resistant to rituximab-based therapy. Median duration of response to a single course of treatment is about 1 year with complete remission rates that last 2 years or longer in about 25% of patients. Clinical trials suggest that anti- CD20 radioimmunotherapy is superior to total body irradiation in patients undergoing stem cell supported therapy for B-cell lymphoma, and that it is a safe and efficacious modality when used as consolidation therapy following chemotherapy. Among cytotoxic treatment options, current evidence suggests that one course of anti-CD20 radioimmunotherapy is as efficacious as six to eight cycles of combination chemotherapy. A major question that persists is how effective these agents are in the setting of rituximab- refractory lymphoma. These products have been underutilised because of the complexity of treatment coordination and concerns regarding reimbursement

    Strategies for Controlled Placement of Nanoscale Building Blocks

    Get PDF
    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others
    • …
    corecore