1,482 research outputs found
Nodal Gap in Fe-Based Layered Superconductor LaO_0.9F_{0.1-delta}FeAs Probed by Specific Heat Measurements
We report the specific heat measurements on the newly discovered Fe-based
layered superconductor LaO_0.9F_{0.1-delta}FeAs with the onset transition
temperature T_c \approx 28 K. A nonlinear magnetic field dependence of the
electronic specific heat coefficient gamma(H) has been found in the low
temperature limit, which is consistent with the prediction for a nodal
superconductor. The maximum gap value Delta_0 \approx 3.40.5 meV was
derived by analyzing gamma(H) based on the d-wave model. We also detected the
electronic specific heat difference between 9 T and 0 T in wide temperature
region, a specific heat anomaly can be clearly observed near T_c. The Debye
temperature of our sample was determined to be about 315.7 K. Our results
suggest an unconventional mechanism for this new superconductor.Comment: 4 pages, 4 figures,Corrected typo
Competing Quantum Orderings in Cuprate Superconductors: A Minimal Model
We present a minimal model for cuprate superconductors. At the unrestricted
mean-field level, the model produces homogeneous superconductivity at large
doping, striped superconductivity in the underdoped regime and various
antiferromagnetic phases at low doping and for high temperatures. On the
underdoped side, the superconductor is intrinsically inhomogeneous and global
phase coherence is achieved through Josephson-like coupling of the
superconducting stripes. The model is applied to calculate experimentally
measurable ARPES spectra.Comment: 5 pages, 4 eps included figure
The Effective Field Theory of Dark Matter Direct Detection
We extend and explore the general non-relativistic effective theory of dark
matter (DM) direct detection. We describe the basic non-relativistic building
blocks of operators and discuss their symmetry properties, writing down all
Galilean-invariant operators up to quadratic order in momentum transfer arising
from exchange of particles of spin 1 or less. Any DM particle theory can be
translated into the coefficients of an effective operator and any effective
operator can be simply related to most general description of the nuclear
response. We find several operators which lead to novel nuclear responses.
These responses differ significantly from the standard minimal WIMP cases in
their relative coupling strengths to various elements, changing how the results
from different experiments should be compared against each other. Response
functions are evaluated for common DM targets - F, Na, Ge, I, and Xe - using
standard shell model techniques. We point out that each of the nuclear
responses is familiar from past studies of semi-leptonic electroweak
interactions, and thus potentially testable in weak interaction studies. We
provide tables of the full set of required matrix elements at finite momentum
transfer for a range of common elements, making a careful and fully
model-independent analysis possible. Finally, we discuss embedding
non-relativistic effective theory operators into UV models of dark matter.Comment: 32+23 pages, 5 figures; v2: some typos corrected and definitions
clarified; v3: some factors of 4pi correcte
Community-based incidence of acute renal failure
There is limited information about the true incidence of acute renal failure (ARF). Most studies could not quantify disease frequency in the general population as they are hospital-based and confounded by variations in threshold and the rate of hospitalization. Earlier studies relied on diagnostic codes to identify non-dialysis requiring ARF. These underestimated disease incidence since the codes have low sensitivity. Here we quantified the incidence of non-dialysis and dialysis-requiring ARF among members of a large integrated health care delivery system – Kaiser Permanente of Northern California. Non-dialysis requiring ARF was identified using changes in inpatient serum creatinine values. Between 1996 and 2003, the incidence of non-dialysis requiring ARF increased from 322.7 to 522.4 whereas that of dialysis-requiring ARF increased from 19.5 to 29.5 per 100 000 person-years. ARF was more common in men and among the elderly, although those aged 80 years or more were less likely to receive acute dialysis treatment. We conclude that the use of serum creatinine measurements to identify cases of non-dialysis requiring ARF resulted in much higher estimates of disease incidence compared with previous studies. Both dialysis-requiring and non-dialysis requiring ARFs are becoming more common. Our data underscore the public health importance of ARF
Detecting the Most Distant (z>7) Objects with ALMA
Detecting and studying objects at the highest redshifts, out to the end of
Cosmic Reionization at z>7, is clearly a key science goal of ALMA. ALMA will in
principle be able to detect objects in this redshift range both from high-J
(J>7) CO transitions and emission from ionized carbon, [CII], which is one of
the main cooling lines of the ISM. ALMA will even be able to resolve this
emission for individual targets, which will be one of the few ways to determine
dynamical masses for systems in the Epoch of Reionization. We discuss some of
the current problems regarding the detection and characterization of objects at
high redshifts and how ALMA will eliminate most (but not all) of them.Comment: to appear in Astrophysics and Space Science, "Science with ALMA: a
new era for Astrophysics", ed. R. Bachille
Evaluating quasilocal energy and solving optimal embedding equation at null infinity
We study the limit of quasilocal energy defined in [7] and [8] for a family
of spacelike 2-surfaces approaching null infinity of an asymptotically flat
spacetime. It is shown that Lorentzian symmetry is recovered and an
energy-momentum 4-vector is obtained. In particular, the result is consistent
with the Bondi-Sachs energy-momentum at a retarded time. The quasilocal mass in
[7] and [8] is defined by minimizing quasilocal energy among admissible
isometric embeddings and observers. The solvability of the Euler-Lagrange
equation for this variational problem is also discussed in both the
asymptotically flat and asymptotically null cases. Assuming analyticity, the
equation can be solved and the solution is locally minimizing in all orders. In
particular, this produces an optimal reference hypersurface in the Minkowski
space for the spatial or null exterior region of an asymptotically flat
spacetime.Comment: 22 page
Integral equation method for the electromagnetic wave propagation in stratified anisotropic dielectric-magnetic materials
We investigate the propagation of electromagnetic waves in stratified
anisotropic dielectric-magnetic materials using the integral equation method
(IEM). Based on the superposition principle, we use Hertz vector formulations
of radiated fields to study the interaction of wave with matter. We derive in a
new way the dispersion relation, Snell's law and reflection/transmission
coefficients by self-consistent analyses. Moreover, we find two new forms of
the generalized extinction theorem. Applying the IEM, we investigate the wave
propagation through a slab and disclose the underlying physics which are
further verified by numerical simulations. The results lead to a unified
framework of the IEM for the propagation of wave incident either from a medium
or vacuum in stratified dielectric-magnetic materials.Comment: 14pages, 3figure
Primordial magnetic fields and the HI signal from the epoch of reionization
The implication of primordial magnetic-field-induced structure formation for
the HI signal from the epoch of reionization is studied. Using semi-analytic
models, we compute both the density and ionization inhomogeneities in this
scenario. We show that: (a) The global HI signal can only be seen in emission,
unlike in the standard CDM models, (b) the density perturbations
induced by primordial fields, leave distinctive signatures of the magnetic
field Jeans' length on the HI two-point correlation function, (c) the length
scale of ionization inhomogeneities is \la 1 \rm Mpc. We find that the peak
expected signal (two-point correlation function) is in
the range of scales for magnetic field strength in the
range . We also discuss the
detectability of the HI signal. The angular resolution of the on-going and
planned radio interferometers allows one to probe only the largest magnetic
field strengths that we consider. They have the sensitivity to detect the
magnetic field-induced features. We show that thefuture SKA has both the
angular resolution and the sensitivity to detect the magnetic field-induced
signal in the entire range of magnetic field values we consider, in an
integration time of one week.Comment: 19 pages, 5 figures, to appear in JCA
Adsorption of Line Segments on a Square Lattice
We study the deposition of line segments on a two-dimensional square lattice.
The estimates for the coverage at jamming obtained by Monte-Carlo simulations
and by -order time-series expansion are successfully compared. The
non-trivial limit of adsorption of infinitely long segments is studied, and the
lattice coverage is consistently obtained using these two approaches.Comment: 19 pages in Latex+5 postscript files sent upon request ; PTB93_
On geometric problems related to Brown-York and Liu-Yau quasilocal mass
We discuss some geometric problems related to the definitions of quasilocal
mass proposed by Brown-York \cite{BYmass1} \cite{BYmass2} and Liu-Yau
\cite{LY1} \cite{LY2}. Our discussion consists of three parts. In the first
part, we propose a new variational problem on compact manifolds with boundary,
which is motivated by the study of Brown-York mass. We prove that critical
points of this variation problem are exactly static metrics. In the second
part, we derive a derivative formula for the Brown-York mass of a smooth family
of closed 2 dimensional surfaces evolving in an ambient three dimensional
manifold. As an interesting by-product, we are able to write the ADM mass
\cite{ADM61} of an asymptotically flat 3-manifold as the sum of the Brown-York
mass of a coordinate sphere and an integral of the scalar curvature plus
a geometrically constructed function in the asymptotic region outside
. In the third part, we prove that for any closed, spacelike, 2-surface
in the Minkowski space for which the Liu-Yau mass is
defined, if bounds a compact spacelike hypersurface in ,
then the Liu-Yau mass of is strictly positive unless lies on
a hyperplane. We also show that the examples given by \'{O} Murchadha, Szabados
and Tod \cite{MST} are special cases of this result.Comment: 28 page
- …