1 research outputs found

    Corrections to Einstein's relation for Brownian motion in a tilted periodic potential

    Get PDF
    In this paper we revisit the problem of Brownian motion in a tilted periodic potential. We use homogenization theory to derive general formulas for the effective velocity and the effective diffusion tensor that are valid for arbitrary tilts. Furthermore, we obtain power series expansions for the velocity and the diffusion coefficient as functions of the external forcing. Thus, we provide systematic corrections to Einstein's formula and to linear response theory. Our theoretical results are supported by extensive numerical simulations. For our numerical experiments we use a novel spectral numerical method that leads to a very efficient and accurate calculation of the effective velocity and the effective diffusion tensor.Comment: 29 pages, 7 figures, submitted to the Journal of Statistical Physic
    corecore