25 research outputs found

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3â€Č-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Get PDF
    To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events42Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases

    A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers

    Get PDF
    Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10−8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers

    Customer value metrics

    No full text

    Biophysical studies of the structure and mechanism of a bacterial protein toxin

    No full text
    Pneumolysin, an important virulence factor of the human pathogen Streptococcus pneumoniae, is a pore-forming toxin which also possesses the ability to activate the complement system directly. Pneumolysin binds to cholesterol in cell membrane surfaces as a prelude to pore formation, which involves the oligomerization of the protein. Two important aspects of the pore-forming activity of pneumolysin are therefore the effect of the toxin on bilayer membrane structure and the nature of the self-association into oligomers undergone by it. We have used analytical ultracentrifugation (AUC) to investigate oligomerization and small-angle neutron scattering (SANS) to investigate the changes in membrane structure accompanying pore formation. Pneumolysin self-associates in solution to form oligomeric structures apparently similar to those which appear on the membrane coincident with pore formation. It has previously been demonstrated by us using site-specific chemical derivatization of the protein that the self-interaction preceding oligomerization involves its C-terminal domain. The AUC experiments described here involved pneumolysin toxoids harbouring mutations in different domains, and support our previous conclusions that self-interaction via the C-terminal domain leads to oligomerization and that this may be related to the mechanism by which pneumolysin activates the complement system. SANS data at a variety of neutron contrasts were obtained from liposomes used as model cell membranes in the absence of pneumolysin, and following the addition of toxin at a number of concentrations. These experiments were designed to allow visualization of the effect that pneumolysin has on bilayer membrane structure resulting from oligomerization into a pore-forming complex. The structure of the liposomal membrane alone and following addition of pneumolysin was calculated by the fitting of scattering equations directly to the scattering curves. The fitting equations describe scattering from simple three-dimensional scattering volume models for the structures present in the sample, whose dimensions were varied iteratively within the fitting program. The overall trend was a thinning of the liposome surface on toxin attack, which was countered by the formation of localized structures thicker than the liposome bilayer itself, in a manner dependent on pneumolysin concentration. At the neutron contrast match point of the liposomes, pneumolysin oligomers were observed. Inactive toxin appeared to bind to the liposome but not to cause membrane alteration; subsequent activation of pneumolysin in situ brought about changes in liposome structure similar to those seen in the presence of active toxin. We propose that the changes in membrane structure on toxin attack which we have observed are related to the mechanism by which pneumolysin forms pores and provide an important perspective on protein/membrane interactions in general. We discuss these results in the light of published data concerning the interaction of gramicidin with bilayers and the hydrophobic mismatch effect
    corecore