7 research outputs found

    On the cognitive effectiveness of routing symbols in process modeling languages

    Get PDF
    Process models provide visual support for analyzing and improving complex organizational processes. In this paper, we discuss differences of process modeling languages using cognitive effectiveness considerations, to make statements about the ease of use and quality of user experience. Aspects of cognitive effectiveness are of importance for learning a modeling language, creating models, and understanding models. We identify the criteria representational clarity, perceptual discriminability, perceptual immediacy, visual expressiveness, and graphic parsimony to compare and assess the cognitive effectiveness of different modeling languages. We apply these criteria in an analysis of the routing elements of UML Activity Diagrams, YAWL, BPMN, and EPCs, to uncover their relative strengths and weaknesses from a quality of user experience perspective. We draw conclusions that are relevant to the usability of these languages in business process modeling projects

    Campagne de mesures sur des chauffe-eau solaires

    No full text
    CNRS RP 400 (185) / INIST-CNRS - Institut de l'Information Scientifique et TechniqueSIGLEFRFranc

    What is the Correct Definition of Average Pressure?

    Get PDF
    Use of a correct definition of average pressure is important in numerical modeling of oil reservoirs and aquifers, where the simulated domain can be very large. Also, the average pressure needs to be defined in the application of pore-network modeling of (two-phase) flow in porous media, as well as in the (theoretical) upscaling of flow equations. Almost always the so-called intrinsic phase-volume average operator, which weighs point pressure values with point saturation values, is employed. Here, we introduce and investigate four other potentially plausible averaging operators. Among them is the centroid-corrected phase-average pressure, which corrects the intrinsic phase-volume average pressure for the distance between the centroid of the averaging volume and the phase. We consider static equilibrium of two immiscible fluids in a homogeneous, one-dimensional, vertical porous medium domain under a series of (static) drainage conditions. An important feature of static equilibrium is that the total potential (i.e., the sum of pressure and gravity potentials) is constant for each phase over the whole domain. Therefore, its average will be equal to the same constant. It is argued that the correct average pressure must preserve the fact that fluid potentials are constant.We have found that the intrinsic phase-volume average pressure results in a gradient in the total phase potential, i.e., the above criterion is violated. In fact, only the centroid-corrected operator satisfies this criterion. However, at high saturations, use of the centroid-corrected average can give rise to negative values of the difference between the average nonwetting and wetting phase pressures. For main drainage, differences among various averaging operators are significantly less because both phases are present initially, such that the difference between the centroids of phases, and the middle of the domain are relatively small.GeotechnologyCivil Engineering and Geoscience
    corecore