8 research outputs found
Nonresonant inelastic light scattering in the Hubbard model
Inelastic light scattering from electrons is a symmetry-selective probe of
the charge dynamics within correlated materials. Many measurements have been
made on correlated insulators, and recent exact solutions in large dimensions
explain a number of anomalous features found in experiments. Here we focus on
the correlated metal, as described by the Hubbard model away from half filling.
We can determine the B1g Raman response and the inelastic X-ray scattering
along the Brillouin zone diagonal exactly in the large dimensional limit. We
find a number of interesting features in the light scattering response which
should be able to be seen in correlated metals such as the heavy fermions.Comment: 9 pages, 7 figures, typeset with ReVTe
Pinned Balseiro-Falicov Model of Tunneling and Photoemission in the Cuprates
The smooth evolution of the tunneling gap of Bi_2Sr_2CaCu_2O_8 with doping
from a pseudogap state in the underdoped cuprates to a superconducting state at
optimal and overdoping, has been interpreted as evidence that the pseudogap
must be due to precursor pairing. We suggest an alternative explanation, that
the smoothness reflects a hidden SO(N) symmetry near the (pi,0) points of the
Brillouin zone (with N = 3, 4, 5, or 6). Because of this symmetry, the
pseudogap could actually be due to any of a number of nesting instabilities,
including charge or spin density waves or more exotic phases. We present a
detailed analysis of this competition for one particular model: the pinned
Balseiro-Falicov model of competing charge density wave and (s-wave)
superconductivity. We show that most of the anomalous features of both
tunneling and photoemission follow naturally from the model, including the
smooth crossover, the general shape of the pseudogap phase diagram, the
shrinking Fermi surface of the pseudogap phase, and the asymmetry of the
tunneling gap away from optimal doping. Below T_c, the sharp peak at Delta_1
and the dip seen in the tunneling and photoemission near 2Delta_1 cannot be
described in detail by this model, but we suggest a simple generalization to
account for inhomogeneity, which does provide an adequate description. We show
that it should be possible, with a combination of photoemission and tunneling,
to demonstrate the extent of pinning of the Fermi level to the Van Hove
singularity. A preliminary analysis of the data suggests pinning in the
underdoped, but not in the overdoped regime.Comment: 18 pages LaTeX, 26 ps. figure
