10 research outputs found

    Resummation of the Divergent Perturbation Series for a Hydrogen Atom in an Electric Field

    Get PDF
    We consider the resummation of the perturbation series describing the energy displacement of a hydrogenic bound state in an electric field (known as the Stark effect or the LoSurdo-Stark effect), which constitutes a divergent formal power series in the electric field strength. The perturbation series exhibits a rich singularity structure in the Borel plane. Resummation methods are presented which appear to lead to consistent results even in problematic cases where isolated singularities or branch cuts are present on the positive and negative real axis in the Borel plane. Two resummation prescriptions are compared: (i) a variant of the Borel-Pade resummation method, with an additional improvement due to utilization of the leading renormalon poles (for a comprehensive discussion of renormalons see [M. Beneke, Phys. Rep. vol. 317, p. 1 (1999)]), and (ii) a contour-improved combination of the Borel method with an analytic continuation by conformal mapping, and Pade approximations in the conformal variable. The singularity structure in the case of the LoSurdo-Stark effect in the complex Borel plane is shown to be similar to (divergent) perturbative expansions in quantum chromodynamics.Comment: 14 pages, RevTeX, 3 tables, 1 figure; numerical accuracy of results enhanced; one section and one appendix added and some minor changes and additions; to appear in phys. rev.

    Stability of critical behaviour of weakly disordered systems with respect to the replica symmetry breaking

    Full text link
    A field-theoretic description of the critical behaviour of the weakly disordered systems is given. Directly, for three- and two-dimensional systems a renormalization analysis of the effective Hamiltonian of model with replica symmetry breaking (RSB) potentials is carried out in the two-loop approximation. For case with 1-step RSB the fixed points (FP's) corresponding to stability of the various types of critical behaviour are identified with the use of the Pade-Borel summation technique. Analysis of FP's has shown a stability of the critical behaviour of the weakly disordered systems with respect to RSB effects and realization of former scenario of disorder influence on critical behaviour.Comment: 10 pages, RevTeX. Version 3 adds the β\beta functions for arbitrary dimension of syste

    Higher Order Evaluation of the Critical Temperature for Interacting Homogeneous Dilute Bose Gases

    Get PDF
    We use the nonperturbative linear \delta expansion method to evaluate analytically the coefficients c_1 and c_2^{\prime \prime} which appear in the expansion for the transition temperature for a dilute, homogeneous, three dimensional Bose gas given by T_c= T_0 \{1 + c_1 a n^{1/3} + [ c_2^{\prime} \ln(a n^{1/3}) +c_2^{\prime \prime} ] a^2 n^{2/3} + {\cal O} (a^3 n)\}, where T_0 is the result for an ideal gas, a is the s-wave scattering length and n is the number density. In a previous work the same method has been used to evaluate c_1 to order-\delta^2 with the result c_1= 3.06. Here, we push the calculation to the next two orders obtaining c_1=2.45 at order-\delta^3 and c_1=1.48 at order-\delta^4. Analysing the topology of the graphs involved we discuss how our results relate to other nonperturbative analytical methods such as the self-consistent resummation and the 1/N approximations. At the same orders we obtain c_2^{\prime\prime}=101.4, c_2^{\prime \prime}=98.2 and c_2^{\prime \prime}=82.9. Our analytical results seem to support the recent Monte Carlo estimates c_1=1.32 \pm 0.02 and c_2^{\prime \prime}= 75.7 \pm 0.4.Comment: 29 pages, 3 eps figures. Minor changes, one reference added. Version in press Physical Review A (2002

    BF models, Duality and Bosonization on higher genus surfaces

    Full text link
    The generating functional of two dimensional BFBF field theories coupled to fermionic fields and conserved currents is computed in the general case when the base manifold is a genus g compact Riemann surface. The lagrangian density L=dBAL=dB{\wedge}A is written in terms of a globally defined 1-form AA and a multi-valued scalar field BB. Consistency conditions on the periods of dBdB have to be imposed. It is shown that there exist a non-trivial dependence of the generating functional on the topological restrictions imposed to BB. In particular if the periods of the BB field are constrained to take values 4πn4\pi n, with nn any integer, then the partition function is independent of the chosen spin structure and may be written as a sum over all the spin structures associated to the fermions even when one started with a fixed spin structure. These results are then applied to the functional bosonization of fermionic fields on higher genus surfaces. A bosonized form of the partition function which takes care of the chosen spin structure is obtainedComment: 17 page

    Asymptotically Improved Convergence of Optimized Perturbation Theory in the Bose-Einstein Condensation Problem

    Full text link
    We investigate the convergence properties of optimized perturbation theory, or linear δ\delta expansion (LDE), within the context of finite temperature phase transitions. Our results prove the reliability of these methods, recently employed in the determination of the critical temperature T_c for a system of weakly interacting homogeneous dilute Bose gas. We carry out the explicit LDE optimized calculations and also the infrared analysis of the relevant quantities involved in the determination of TcT_c in the large-N limit, when the relevant effective static action describing the system is extended to O(N) symmetry. Then, using an efficient resummation method, we show how the LDE can exactly reproduce the known large-N result for TcT_c already at the first non-trivial order. Next, we consider the finite N=2 case where, using similar resummation techniques, we improve the analytical results for the nonperturbative terms involved in the expression for the critical temperature allowing comparison with recent Monte Carlo estimates of them. To illustrate the method we have considered a simple geometric series showing how the procedure as a whole works consistently in a general case.Comment: 38 pages, 3 eps figures, Revtex4. Final version in press Phys. Rev.
    corecore