14 research outputs found
Closed forms and multi-moment maps
We extend the notion of multi-moment map to geometries defined by closed
forms of arbitrary degree. We give fundamental existence and uniqueness results
and discuss a number of essential examples, including geometries related to
special holonomy. For forms of degree four, multi-moment maps are guaranteed to
exist and are unique when the symmetry group is (3,4)-trivial, meaning that the
group is connected and the third and fourth Lie algebra Betti numbers vanish.
We give a structural description of some classes of (3,4)-trivial algebras and
provide a number of examples.Comment: 36 page
Modular Lie algebras and the Gelfand-Kirillov conjecture
Let g be a finite dimensional simple Lie algebra over an algebraically closed
field of characteristic zero. We show that if the Gelfand-Kirillov conjecture
holds for g, then g has type A_n, C_n or G_2.Comment: 20 page
Toeplitz Quantization of K\"ahler Manifolds and
For general compact K\"ahler manifolds it is shown that both Toeplitz
quantization and geometric quantization lead to a well-defined (by operator
norm estimates) classical limit. This generalizes earlier results of the
authors and Klimek and Lesniewski obtained for the torus and higher genus
Riemann surfaces, respectively. We thereby arrive at an approximation of the
Poisson algebra by a sequence of finite-dimensional matrix algebras ,
.Comment: 17 pages, AmsTeX 2.1, Sept. 93 (rev: only typos are corrected
Type-Decomposition of a Pseudo-Effect Algebra
The theory of direct decomposition of a centrally orthocomplete effect
algebra into direct summands of various types utilizes the notion of a
type-determining (TD) set. A pseudo-effect algebra (PEA) is a (possibly)
noncommutative version of an effect algebra. In this article we develop the
basic theory of centrally orthocomplete PEAs, generalize the notion of a TD set
to PEAs, and show that TD sets induce decompositions of centrally orthocomplete
PEAs into direct summands.Comment: 18 page
Coherent States of the q--Canonical Commutation Relations
For the -deformed canonical commutation relations for in some Hilbert
space we consider representations generated from a vector
satisfying , where .
We show that such a representation exists if and only if .
Moreover, for these representations are unitarily equivalent
to the Fock representation (obtained for ). On the other hand
representations obtained for different unit vectors are disjoint. We
show that the universal C*-algebra for the relations has a largest proper,
closed, two-sided ideal. The quotient by this ideal is a natural -analogue
of the Cuntz algebra (obtained for ). We discuss the Conjecture that, for
, this analogue should, in fact, be equal to the Cuntz algebra
itself. In the limiting cases we determine all irreducible
representations of the relations, and characterize those which can be obtained
via coherent states.Comment: 19 pages, Plain Te
Noncommutative Spheres and Instantons
We report on some recent work on deformation of spaces, notably deformation
of spheres, describing two classes of examples. The first class of examples
consists of noncommutative manifolds associated with the so called
-deformations which were introduced out of a simple analysis in terms
of cycles in the -complex of cyclic homology. These examples have
non-trivial global features and can be endowed with a structure of
noncommutative manifolds, in terms of a spectral triple (\ca, \ch, D). In
particular, noncommutative spheres are isospectral
deformations of usual spherical geometries. For the corresponding spectral
triple (\cinf(S^{N}_\theta), \ch, D), both the Hilbert space of spinors \ch=
L^2(S^{N},\cs) and the Dirac operator are the usual ones on the
commutative -dimensional sphere and only the algebra and its action
on are deformed. The second class of examples is made of the so called
quantum spheres which are homogeneous spaces of quantum orthogonal
and quantum unitary groups. For these spheres, there is a complete description
of -theory, in terms of nontrivial self-adjoint idempotents (projections)
and unitaries, and of the -homology, in term of nontrivial Fredholm modules,
as well as of the corresponding Chern characters in cyclic homology and
cohomology.Comment: Minor changes, list of references expanded and updated. These notes
are based on invited lectures given at the ``International Workshop on
Quantum Field Theory and Noncommutative Geometry'', November 26-30 2002,
Tohoku University, Sendai, Japan. To be published in the workshop proceedings
by Springer-Verlag as Lecture Notes in Physic