40 research outputs found

    New electron cyclotron emission diagnostic based upon the electron Bernstein wave

    Full text link
    Most magnetically confined plasma devices cannot take advantage of standard Electron Cyclotron Emission (ECE) diagnostics to measure temperature. They either operate at high density relative to their magnetic field or they do not have sufficient density and temperature to reach the blackbody condition. The standard ECE technique measures the electromagnetic waves emanating from the plasma. Here we propose to measure electron Bernstein waves (EBW) to ascertain the local electron temperature in these plasmas. The optical thickness of EBW is extremely high because it is an electrostatic wave with a large k(subscript i). One can reach the blackbody condition with a plasma density approximately equal to 10(superscript 11) cm(superscript -3) and electron temperature approximately equal to 1 eV. This makes it attractive to most plasma devices. One serious issue with using EBW is the wave accessibility. EBW may be accessible by either direct coupling or mode conversion through an extremely narrow layer (approximately 1-2 mm) in low field devices

    Overview of recent physics results from the National Spherical Torus Experiment (NSTX)

    Full text link

    Regimes of operation in the Princeton Large Torus

    No full text
    In the quest for optimum discharge conditions in the Princeton Large Torus (PLT), a variety of discharge regimes have been produced. These separate broadly into two main categories - those regimes with m greater than or equal to 2 oscillatory MHD instabilities and often hollow electron profiles for tungsten limiters, and those regimes for which the electron temperature is sufficiently peaked to support the internal sawtooth or near-sawtooth (m = 1) instability. The internal sawtooth regime is found to be optimum for confinement but to be more difficult to select when low-Z impurity concentrations have been reduced with low power discharge cleaning or gettering to permit extension of the high density operation limit. Gas programming is used to cool the plasma periphery, thereby reducing the high-Z impurity concentrations and causing the current channel to constrict into the sawtooth regime, and then to attain the desired plasma density. With discharges selected in this manner, gross energetic confinement times up to approx. 100 msec have been obtained at densities of approx. 10/sup 14/ cm/sup -3/, and very high ion and electron temperatures have been produced with neutral beam injection heating at lower densities with no observable deleterious effect on energy confinement
    corecore