49 research outputs found

    A variant t(14;17) in acute promyelocytic leukemia. Positive response to retinoic acid treatment

    Get PDF
    We present a case of acute promyelocytic leukemia (APL) carrying an atypical translocation involving chromosomes 14 and 17. This translocation could be considered a variant of the APL-specific t(15;17). Positive response to retinoic acid treatment suggests molecular rearrangement of retinoic acid receptor alpha

    A recurrent translocation, t(3;11)(q21;q13), found in two distinct cases of acute myeloid leukemia

    Get PDF
    We report two cases of acute myeloid leukemia (M1 and M5B subtypes) with a similar translocation, t(3;11)(q21;q13). We discuss the involvement of these breakpoints in acute leukemia and their putative clinical implications

    Multiple myeloma primary cells show a highly rearranged unbalanced genome with amplifications and homozygous deletions irrespective of the presence of immunoglobulin-related chromosome translocations

    Get PDF
    Background and Objectives Multiple myeloma (MM) is a malignant plasma cell neoplasia in which genetic studies have shown that genomic changes may affect almost all chromosomes, as shown by fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH). Our objective was the genomic characterization of CD 138 positive primary MM samples by means of a high resolution array CGH platform. Design and Methods For the first time, a high resolution array CGH with more than 40,000 probes, has been used to analyze 26 primary MM samples after the enrichment of CD138-positive plasma cells. Results This approach identified copy number imbalances in all cases. Bioinformatics strategies were optimized to perform data analysis allowing the segregation of hyperdiploid and non-hyperdiploid cases by array CGH. Additional analysis showed that structural chromosome rearrangements were more frequently seen in hyperdiploid cases. We also identified the same Xq21 duplication in nearly 20% of the cases, which originated through unbalanced chromosome translocations. High level amplifications and homozygous deletions were recurrently observed in our series and involved genes with meaningful function in cancer biology. Interpretation and Conclusions High resolution array CGH allowed us to identify copy number changes in 100% of the primary MM samples. We segregated different MM subgroups based on their genomic profiles which made it possible to identify homozygous deletions and amplifications of great genetic relevance in MM

    Cytogenetic analysis of 280 patients with multiple myeloma and related disorders: primary breakpoints and clinical correlations

    Get PDF
    Cytogenetic analysis of unstimulated short-term bone marrow cell cultures was performed on 280 patients with multiple myeloma and related disorders. In 65% of the cases, an additional short term B-cell stimulated culture was also examined. Chromosomally abnormal clones were found in 31% of the patients, 15% in Waldenström macroglobulinemia. 25% in monoclonal gammopathies, 33% in multiple myeloma, and 50% in plasma cell leukemia. Three primary chromosomal breakpoints were recurrently involved: 14q32, 16q22, and 22q11. Structural rearrangements of chromosome 1 were the most frequent (26% of the abnormal cases), but always as a secondary change. Rearrangements of band 14q32 were found in 22% of the abnormal cases. Among the multiple myeloma patients who showed an abnormal karyotype, 33 (46%) were hyperdiploid, most frequently, with 52-56 chromosomes, 29 patients (40%) were pseudodiploid, and the remaining 12 cases (14%) were hypodiploid. A highly significant relation was observed between the presence of an abnormal karyotype and the following clinical parameters: stage III (P = 0.0001), bone marrow plasma cell infiltration greater than 30% (P = 0.0001), presence of bone lesions (P = 0.0009), and beta 2-microglobulin levels greater than 4 mg/L (P = 0.0001)

    Epigenetic Signatures Associated with Different Levels of Differentiation Potential in Human Stem Cells

    Get PDF
    The therapeutic use of multipotent stem cells depends on their differentiation potential, which has been shown to be variable for different populations. These differences are likely to be the result of key changes in their epigenetic profiles

    Comparative genomic hybridization and amplotyping by arbitrarily primed PCR in stage A B-CLL

    Get PDF
    Cytogenetic analysis is useful in the diagnosis and to assess prognosis of B-cell chronic lymphocytic leukemia (B-CLL). However, successful cytogenetics by standard techniques has been hindered by the low in vitro mitotic activity of the malignant B-cell population. Fluorescence in situ hybridization (FISH) has become a useful tool, but it does not provide an overall view of the aberrations. To overcome this hurdle, two DNA-based techniques have been tested in the present study: comparative genomic hybridization (CGH) and amplotyping by arbitrarily primed PCR (AP-PCR). Comparative genomic hybridization resolution depends upon the 400-bands of the human standard karyotype. AP-PCR allows detection of allelic losses and gains in tumor cells by PCR fingerprinting, thus its resolution is at the molecular level. Both techniques were performed in 23 patients with stage A B-CLL at diagnosis. The results were compared with FISH. The sensitivity of AP-PCR was greater than CGH (62% vs. 43%). The use of CGH combined with AP-PCR allowed to detect genetic abnormalities in 79% (15/19) of patients in whom G-banding was not informative, providing a global view of the aberrations in a sole experiment. This study shows that combining these two methods with FISH, makes possible a more precise genetic characterization of patients with B-CLL

    NUP98 is fused to adducin 3 in a patient with T-cell acute lymphoblastic leukemia and myeloid markers, with a new translocation t(10;11)(q25;p15)

    Get PDF
    The nucleoporin 98 gene (NUP98) has been reported to be fused to 13 partner genes in hematological malignancies with 11p15 translocations. Twelve of them have been identified in patients with myeloid neoplasias and only 1, RAP1GDS1 (4q21), is fused with NUP98 in five patients with T-cell acute lymphoblastic leukemia (T-ALL). Three of these patients coexpressed T and myeloid markers, suggesting the specific association of t(4;11)(q21;p15) with a subset of T-ALL originating from an early progenitor, which has the potential to express mature T-cell antigens as well as myeloid markers. We describe here a new NUP98 partner involved in a t(10;11)(q25;p15) in a patient with acute biphenotypic leukemia, showing coexpression of mature T and myeloid markers. The gene involved, located in 10q25, was identified as ADD3 using 3'-RACE. ADD3 codes for the ubiquitous expressed subunit gamma of the adducin protein, and it seems to play an important role in the skeletal organization of the cell membrane. Both NUP98-ADD3 and ADD3-NUP98 fusion transcripts are expressed in the patient. This is the second partner of NUP98 described in T-ALL. Adducin shares with the product of RAP1GDS1, and with all of the nonhomeobox NUP98 partners, the presence of a region with significant probability of adopting a coiled-coil conformation. This region is always retained in the fusion transcript with the NH(2) terminus FG repeats of NUP98, suggesting an important role in the mechanism of leukemogenesis

    DNA Methylation Profiles and Their Relationship with Cytogenetic Status in Adult Acute Myeloid Leukemia

    Get PDF
    Background: Aberrant promoter DNA methylation has been shown to play a role in acute myeloid leukemia (AML) pathophysiology. However, further studies to discuss the prognostic value and the relationship of the epigenetic signatures with defined genomic rearrangements in acute myeloid leukemia are required. Methodology/Principal Findings: We carried out high-throughput methylation profiling on 116 de novo AML cases and we validated the significant biomarkers in an independent cohort of 244 AML cases. Methylation signatures were associated with the presence of a specific cytogenetic status. In normal karyotype cases, aberrant methylation of the promoter of DBC1 was validated as a predictor of the disease-free and overall survival. Furthermore, DBC1 expression was significantly silenced in the aberrantly methylated samples. Patients with chromosome rearrangements showed distinct methylation signatures. To establish the role of fusion proteins in the epigenetic profiles, 20 additional samples of human hematopoietic stem/ progenitor cells (HSPC) transduced with common fusion genes were studied and compared with patient samples carrying the same rearrangements. The presence of MLL rearrangements in HSPC induced the methylation profile observed in the MLL-positive primary samples. In contrast, fusion genes such as AML1/ETO or CBFB/MYH11 failed to reproduce the epigenetic signature observed in the patients. Conclusions/Significance: Our study provides a comprehensive epigenetic profiling of AML, identifies new clinical markers for cases with a normal karyotype, and reveals relevant biological information related to the role of fusion proteins on the methylation signatur
    corecore