6 research outputs found

    Assessing hyper parameter optimization and speedup for convolutional neural networks

    Get PDF
    The increased processing power of graphical processing units (GPUs) and the availability of large image datasets has fostered a renewed interest in extracting semantic information from images. Promising results for complex image categorization problems have been achieved using deep learning, with neural networks comprised of many layers. Convolutional neural networks (CNN) are one such architecture which provides more opportunities for image classification. Advances in CNN enable the development of training models using large labelled image datasets, but the hyper parameters need to be specified, which is challenging and complex due to the large number of parameters. A substantial amount of computational power and processing time is required to determine the optimal hyper parameters to define a model yielding good results. This article provides a survey of the hyper parameter search and optimization methods for CNN architectures

    A theoretical framework for research on readmission risk prediction

    Get PDF
    On the one hand, predictive analytics is an important field of research in Information Systems (IS); however, research on predictive analytics in healthcare is still scarce in IS literature. One area where predictive analytics can be of great benefit is with regard to unplanned readmissions. While a number of studies on readmission prediction already exists in related research areas, there are few guidelines to date on how to conduct such analytics projects. To address this gap the paper presents the general process to develop empirical models by Shmueli and Koppius (2011) and extends this to the specific requirements of readmission risk prediction. Based on a systematic literature review, the resulting process defines important aspects of readmission prediction. It also structures relevant questions and tasks that need to be taken care of in this context. This extension of the guidelines by Shmueli and Koppius (2011) provides a best practice as well as a template that can be used in future studies on readmission risk prediction, thus allowing for more comparable results across various research fields
    corecore