2,295 research outputs found

    Perturbations in electromagnetic dark energy

    Get PDF
    It has been recently proposed that the presence of a temporal electromagnetic field on cosmological scales could explain the phase of accelerated expansion that the universe is currently undergoing. The field contributes as a cosmological constant and therefore, the homogeneous cosmology produced by such a model is exactly the same as that of Λ\LambdaCDM. However, unlike a cosmological constant term, electromagnetic fields can acquire perturbations which in principle could affect CMB anisotropies and structure formation. In this work, we study the evolution of inhomogeneous scalar perturbations in this model. We show that provided the initial electromagnetic fluctuations generated during inflation are small, the model is perfectly compatible with both CMB and large scale structure observations at the same level of accuracy as Λ\LambdaCDM.Comment: 12 pages, 3 figures. Added new comments to match the published versio

    Hawking radiation of scalar particles from accelerating and rotating black holes

    Full text link
    Hawking radiation of uncharged and charged scalars from accelerating and rotating black holes is studied. We calculate the tunneling probabilities of these particles from the rotation and acceleration horizons of these black holes. Using the tunneling method we recover the correct Hawking temperature as well

    Zener transitions between dissipative Bloch bands. II: Current Response at Finite Temperature

    Full text link
    We extend, to include the effects of finite temperature, our earlier study of the interband dynamics of electrons with Markoffian dephasing under the influence of uniform static electric fields. We use a simple two-band tight-binding model and study the electric current response as a function of field strength and the model parameters. In addition to the Esaki-Tsu peak, near where the Bloch frequency equals the damping rate, we find current peaks near the Zener resonances, at equally spaced values of the inverse electric field. These become more prominenent and numerous with increasing bandwidth (in units of the temperature, with other parameters fixed). As expected, they broaden with increasing damping (dephasing).Comment: 5 pages, LateX, plus 5 postscript figure

    Structural, Magnetic and Transport Properties of B-Site Substituted Perovskite La0.7Sr0.3MnO3

    Get PDF
    In this chapter, in order to understand the structural related magnetic and transport properties of B site substituted perovskites La0.7Sr0.3MnO3 (LSMO), we have systematically investigated the effects of replacing some of the Mn with nonmagnetic elements Ti, Zr, Cu, Al, Zn and magnetic elements Co, Ni, Cr, Fe. The structural, magnetic and electrical phase transitions and transport properties of these compounds were investigated by neutron diffraction, magnetization and electric resistivity measurements

    Ferromagnetic Polarons in La0.5Ca0.5MnO3 and La0.33Ca0.67MnO3

    Full text link
    Unrestricted Hartree-Fock calculations on La0.5Ca0.5MnO3 and La0.33Ca0.67MnO3 in the full magnetic unit cell show that the magnetic ground states of these compounds consist of 'ferromagnetic molecules' or polarons ordered in herring-bone patterns. Each polaron consists of either three or five Mn ions separated by O- ions with a magnetic moment opposed to those of the Mn ions. Ferromagnetic coupling within the polarons is strong while coupling between them is relatively weak. Magnetic moments on the Mn ions range between 3.8 and 3.9 Bohr magnetons in La0.5Ca0.5MnO3 and moments on the O- ions are -0.7 Bohr magnetons. Each polaron has a net magnetic moment of 7.0 Bohr magnetons, in good agreement with recently reported magnetisation measurements from electron microscopy. The polaronic nature of the electronic structure reported here is obviously related to the Zener polaron model recently proposed for Pr0.6Ca0.4MnO3 on the basis of neutron scattering data.Comment: 4 pages 5 figure

    Newton's law for Bloch electrons, Klein factors and deviations from canonical commutation relations

    Full text link
    The acceleration theorem for Bloch electrons in a homogenous external field is usually presented using quasiclassical arguments. In quantum mechanical versions the Heisenberg equations of motion for an operator k^(t)\hat {\vec k}(t) are presented mostly without properly defining this operator. This leads to the surprising fact that the generally accepted version of the theorem is incorrect for the most natural definition of k^\hat {\vec k}. This operator is shown not to obey canonical commutation relations with the position operator. A similar result is shown for the phase operators defined via the Klein factors which take care of the change of particle number in the bosonization of the field operator in the description of interacting fermions in one dimension. The phase operators are also shown not to obey canonical commutation relations with the corresponding particle number operators. Implications of this fact are discussed for Tomonaga-Luttinger type models.Comment: 9 pages,1 figur

    A Combined Control Systems and Machine Learning Approach to Forecasting Iceberg Flux off Newfoundland

    Get PDF
    Icebergs have long been a threat to shipping in the NW Atlantic and the iceberg season of February to late summer is monitored closely by the International Ice Patrol. However, reliable predictions of the severity of a season several months in advance would be useful for planning monitoring strategies and also for shipping companies in designing optimal routes across the North Atlantic for specific years. A seasonal forecast model of the build-up of seasonal iceberg numbers has recently become available, beginning to enable this longer-term planning of marine operations. Here we discuss extension of this control systems model to include more recent years within the trial ensemble sample set and also increasing the number of measures of the iceberg season that are considered within the forecast. These new measures include the seasonal iceberg total, the rate of change of the seasonal increase, the number of peaks in iceberg numbers experienced within a given season, and the timing of the peak(s). They are predicted by a range of machine learning tools. The skill levels of the new measures are tested, as is the impact of the extensions to the existing seasonal forecast model. We present a forecast for the 2021 iceberg season, predicting a medium iceberg year

    Effect of band-filling and structural distortions on the Curie temperature of Fe-Mo double perovkites

    Full text link
    By means of high resolution neutron powder diffraction at low temperature we have characterized the structural details of LaxSr2xFeMoO6\rm La_{x}Sr_{2-x}FeMoO_6 (0x0.50\leq {\rm x}\leq 0.5) and CaxSr2xFeMoO6\rm Ca_{x}Sr_{2-x}FeMoO_6 (0x0.60\leq {\rm x}\leq 0.6) series of compounds. This study reveals a similar variation of the mean bond-angle \FeOMo in both series. In contrast, the mean bond-distance \FeMoO\ increases with La but not with Ca substitution. Both series also present a different evolution of the Curie temperature (TCT_C), which raises in the La series and slightly decreases in the Ca one. We thus conclude that the enhancement of TCT_C in the La series is due to the electron filling of the conduction band and a concomitant rising of the density of states at the Fermi level.Comment: Revtex, 4 Journal pages, 2 figures, 1 tabl

    Mechanical activation of pre-alloyed NiTi2 and elemental Ni for the synthesis of NiTi alloys

    Get PDF
    ABSTRACT: This work reports on an efficient powder metallurgy method for the synthesis of NiTi alloys, involving mechanical activation of pre-alloyed NiTi2 and elemental Ni powders (NiTi2-Ni) followed by a press-and-sinter step. The idea is to take advantage of the brittle nature of NiTi2 to promote a better efficiency of the mechanical activation process. The conventional mechanical activation route using elemental Ti and Ni powders (Ti-Ni) was also used for comparative purposes. Starting with (NiTi2-Ni) powder mixtures resulted in the formation of a predominant amorphous structure after mechanical activation at 300 rpm for 2 h. A sintered specimen consisting mainly of NiTi phase was obtained after vacuum sintering at 1050 degrees C for 0.5 h. The produced NiTi phase exhibited the martensitic transformation behavior. Using elemental Ti powders instead of pre-alloyed NiTi2 powders, the structural homogenization of the synthesized NiTi alloys was delayed. Performing the mechanical activation at 300 rpm for the (Ti-Ni) powder mixtures gave rise to the formation of composite particles consisting in dense areas of alternate fine layers of Ni and Ti. However, no significant structural modification was observed even after 16 h of mechanical activation. Only after vacuum sintering at 1050 degrees C for 6 h, the NiTi phase was observed to be the predominant phase. The higher reactivity of the mechanically activated (NiTi2-Ni) powder particles can explain the different sintering behavior of those powders compared with the mechanically activated (Ti-Ni) powders. It is demonstrated that this innovative approach allows an effective time reduction in the mechanical activation and of the vacuum sintering step.info:eu-repo/semantics/publishedVersio

    Constrained estimation of intracranial aneurysm surface deformation using 4D-CTA

    Get PDF
    Background and objective Intracranial aneurysms are relatively common life-threatening diseases, and assessing aneurysm rupture risk and identifying the associated risk factors is essential. Parameters such as the Oscillatory Shear Index, Pressure Loss Coefficient, and Wall Shear Stress are reliable indicators of intracranial aneurysm development and rupture risk, but aneurysm surface irregular pulsation has also received attention in aneurysm rupture risk assessment. Methods The present paper proposed a new approach to estimate aneurysm surface deformation. This method transforms the estimation of aneurysm surface deformation into a constrained optimization problem, which minimizes the error between the displacement estimated by the model and the sparse data point displacements from the four-dimensional CT angiography (4D-CTA) imaging data. Results The effect of the number of sparse data points on the results has been discussed in both simulation and experimental results, and it shows that the proposed method can accurately estimate the surface deformation of intracranial aneurysms when using sufficient sparse data points. Conclusions Due to a potential association between aneurysm rupture and surface irregular pulsation, the estimation of aneurysm surface deformation is needed. This paper proposed a method based on 4D-CTA imaging data, offering a novel solution for the estimation of intracranial aneurysm surface deformation
    corecore