3 research outputs found

    Observing the First Stars and Black Holes

    Full text link
    The high sensitivity of JWST will open a new window on the end of the cosmological dark ages. Small stellar clusters, with a stellar mass of several 10^6 M_sun, and low-mass black holes (BHs), with a mass of several 10^5 M_sun should be directly detectable out to redshift z=10, and individual supernovae (SNe) and gamma ray burst (GRB) afterglows are bright enough to be visible beyond this redshift. Dense primordial gas, in the process of collapsing from large scales to form protogalaxies, may also be possible to image through diffuse recombination line emission, possibly even before stars or BHs are formed. In this article, I discuss the key physical processes that are expected to have determined the sizes of the first star-clusters and black holes, and the prospect of studying these objects by direct detections with JWST and with other instruments. The direct light emitted by the very first stellar clusters and intermediate-mass black holes at z>10 will likely fall below JWST's detection threshold. However, JWST could reveal a decline at the faint-end of the high-redshift luminosity function, and thereby shed light on radiative and other feedback effects that operate at these early epochs. JWST will also have the sensitivity to detect individual SNe from beyond z=10. In a dedicated survey lasting for several weeks, thousands of SNe could be detected at z>6, with a redshift distribution extending to the formation of the very first stars at z>15. Using these SNe as tracers may be the only method to map out the earliest stages of the cosmic star-formation history. Finally, we point out that studying the earliest objects at high redshift will also offer a new window on the primordial power spectrum, on 100 times smaller scales than probed by current large-scale structure data.Comment: Invited contribution to "Astrophysics in the Next Decade: JWST and Concurrent Facilities", Astrophysics & Space Science Library, Eds. H. Thronson, A. Tielens, M. Stiavelli, Springer: Dordrecht (2008

    The Fueling and Evolution of AGN: Internal and External Triggers

    Full text link
    In this chapter, I review the fueling and evolution of active galactic nuclei (AGN) under the influence of internal and external triggers, namely intrinsic properties of host galaxies (morphological or Hubble type, color, presence of bars and other non-axisymmetric features, etc) and external factors such as environment and interactions. The most daunting challenge in fueling AGN is arguably the angular momentum problem as even matter located at a radius of a few hundred pc must lose more than 99.99 % of its specific angular momentum before it is fit for consumption by a BH. I review mass accretion rates, angular momentum requirements, the effectiveness of different fueling mechanisms, and the growth and mass density of black BHs at different epochs. I discuss connections between the nuclear and larger-scale properties of AGN, both locally and at intermediate redshifts, outlining some recent results from the GEMS and GOODS HST surveys.Comment: Invited Review Chapter to appear in LNP Volume on "AGN Physics on All Scales", Chapter 6, in press. 40 pages, 12 figures. Typo in Eq 5 correcte

    Extended Theories of Gravity and their Cosmological and Astrophysical Applications

    Full text link
    We review Extended Theories of Gravity in metric and Palatini formalism pointing out their cosmological and astrophysical application. The aim is to propose an alternative approach to solve the puzzles connected to dark components.Comment: 44 pages, 11 figure
    corecore