1,474 research outputs found

    Butterfly abundance in a warming climate: patterns in space and time are not congruent

    Get PDF
    We present a model of butterfly abundance on transects in England. The model indicates a significant role for climate, but the direction of association is counter to expectation: butterfly population density is higher on sites with a cooler climate. However, the effect is highly heterogeneous, with one in five species displaying a net positive association. We use this model to project the population-level effects of climate warming for the year 2080, using a medium emissions scenario. The results suggest that most populations and species will decline markedly, but that the total number of butterflies will increase as communities become dominated by a few common species. In particular, Maniola jurtina is predicted to make up nearly half of all butterflies on UK Butterfly Monitoring Scheme (UKBMS) transects by 2080. These results contradict the accepted wisdom that most insect populations will grow as the climate becomes warmer. Indeed, our predictions contrast strongly with those derived from inter-annual variation in abundance, emphasizing that we lack a mechanistic understanding about the factors driving butterfly population dynamics over large spatial and temporal scales. Our study underscores the difficulty of predicting future population trends and reveals the naivety of simple space-for-time substitutions, which our projections share with species distribution modelling

    The use of opportunistic data for IUCN Red List assessments

    Get PDF
    IUCN Red Lists are recognized worldwide as powerful instruments for the conservation of species. Quantitative criteria to standardize approaches for estimating population trends, geographic ranges and population sizes have been developed at global and sub-global levels. Little attention has been given to the data needed to estimate species trends and range sizes for IUCN Red List assessments. Few regions collect monitoring data in a structured way and usually only for a limited number of taxa. Therefore, opportunistic data are increasingly used for estimating trends and geographic range sizes. Trend calculations use a range of proxies: (i) monitoring sentinel populations, (ii) estimating changes in available habitat, or (iii) statistical models of change based on opportunistic records. Geographic ranges have been determined using: (i) marginal occurrences, (ii) habitat distributions, (iii) range-wide occurrences, (iv) species distribution modelling (including site-occupancy models), and (v) process-based modelling. Red List assessments differ strongly among regions (Europe, Britain and Flanders, north Belgium). Across different taxonomic groups, in European Red Lists IUCN criteria B and D resulted in the highest level of threat. In Britain, this was the case for criterion D and criterion A, while in Flanders criterion B and criterion A resulted in the highest threat level. Among taxonomic groups, however, large differences in the use of IUCN criteria were revealed. We give examples from Europe, Britain and Flemish Red List assessments using opportunistic data and give recommendations for a more uniform use of IUCN criteria among regions and among taxonomic groups

    Statistics for citizen science: extracting signals of change from noisy ecological data

    Get PDF
    1. Policy-makers increasingly demand robust measures of biodiversity change over short time periods. Long-term monitoring schemes provide high-quality data, often on an annual basis, but are taxonomically and geographically restricted. By contrast, opportunistic biological records are relatively unstructured but vast in quantity. Recently, these data have been applied to increasingly elaborate science and policy questions, using a range of methods. At present we lack a firm understanding of which methods, if any, are capable of delivering unbiased trend estimates on policy-relevant timescales. 2. We identified a set of candidate methods that employ data filtering criteria and/or correction factors to deal with variation in recorder activity. We designed a computer simulation to compare the statistical properties of these methods under a suite of realistic data collection scenarios. We measured the Type I error rates of each method-scenario combination, as well as the power to detect genuine trends. 3. We found that simple methods produce biased trend estimates, and/or had low power. Most methods are robust to variation in sampling effort, but biases in spatial coverage, sampling effort per visit, and detectability, as well as turnover in community composition all induced some methods to fail. No method was wholly unaffected by all forms of variation in recorder activity, although some performed well enough to be useful. 4. We warn against the use of simple methods. Sophisticated methods that model the data collection process offer the greatest potential to estimate timely trends, notably Frescalo and Occupancy-Detection models. 5. The potential of these methods and the value of opportunistic data would be further enhanced by assessing the validity of model assumptions and by capturing small amounts of information about sampling intensity at the point of data collection

    Impacts of neonicotinoid use on long-term population changes in wild bees in England

    Get PDF
    Wild bee declines have been ascribed in part to neonicotinoid insecticides. While short-term laboratory studies on commercially-bred species (principally honeybees and bumblebees) have identified sub-lethal effects, there is no strong evidence linking these insecticides to losses of the majority of wild bee species. We relate 18 years of UK national wild bee distribution data for 62 species to amounts of neonicotinoid use in oilseed rape. Using a multi-species dynamic Bayesian occupancy analysis, we find evidence of increased population extinction rates in response to neonicotinoid seed treatment use on oilseed rape. Species foraging on oilseed rape benefit from the cover of this crop, but were on average three times more negatively affected by exposure to neonicotinoids than non-crop foragers. Our results suggest that sub-lethal effects of neonicotinoids could scale-up to cause losses of bee biodiversity. Restrictions on neonicotinoid use may reduce population declines

    Magnitudes of submarine groundwater discharge from marine and terrestrial sources: Indian River Lagoon, Florida

    Get PDF
    Magnitudes of terrestrial (fresh) and marine (saline) sources of submarine groundwater discharge (SGD) are estimated for a transect across Indian River Lagoon, Florida. Two independent techniques (seepage meters and pore water Cl- concentrations) show terrestrial SGD decreases linearly to around 22 m offshore, and these techniques, together with a model based on the width of the outflow face, indicate a cumulative discharge of between 0.02 and 0.9 m3/d per meter of shoreline. Seepage meters and models of the deficiencies in 222Rn activity in shallow sediments indicate marine SGD discharges of roughly 117 m3/d per meter of shoreline across the entire 1800-m-wide transect. Two surface streams nearest the transect have an average discharge of about 28 m3/d per meter of shoreline. Marine SGD is thus 4 times greater then surface water discharge and more than 2 orders of magnitude greater than terrestrial SGD. The magnitude of the terrestrial SGD is limited by the amount of regional precipitation, evaporation, recharge, and groundwater usage, while marine SGD is limited only by processes circulating marine water into and out of the sediments. The large magnitude of marine SGD means that it could be important for estuarine cycling of reactive components such as nutrients and metals with only slight modification from estuarine water compositions. The small magnitude of terrestrial SGD means that large differences from estuarine water composition would be required to affect chemical cycling

    V.I. Vernadsky and the noosphere concept: Russian understandings of society-nature interaction

    Get PDF
    Recent Russian legislative and policy documentation concerning national progress towards sustainable development has suggested that the attainment of such a state would represent the first stage in the development of the noosphere as outlined by the Russian scientist Vladimir Ivanovich Vernadsky (1863–1945). This paper explores Vernadsky’s model of evolutionary change through a focus on his work on the biosphere and noosphere in an attempt to further understanding of the way in which Russia is approaching the concept of sustainable development in the contemporary period. It is argued that the official Russian interpretation of the noosphere idea tends to obscure the evolutionary and materialist foundations of Vernadsky’s biosphere–noosphere conceptualisation. At the same time, the concluding section of the paper suggests that the scope of Vernadsky’s work can be used to stimulate the search for a more coherent approach to work in areas of sustainable development and sustainability across the span of the social and physical sciences

    A Monitor of Beam Polarization Profiles for the TRIUMF Parity Experiment

    Get PDF
    TRIUMF experiment E497 is a study of parity violation in pp scattering at an energy where the leading term in the analyzing power is expected to vanish, thus measuring a unique combination of weak-interaction flavour conserving terms. It is desired to reach a level of sensitivity of 2x10^-8 in both statistical and systematic errors. The leading systematic errors depend on transverse polarization components and, at least, the first moment of transverse polarization. A novel polarimeter that measures profiles of both transverse components of polarization as a function of position is described.Comment: 19 pages LaTeX, 10 PostScript figures. To appear in Nuclear Instruments and Methods in Physics Research, Section

    Degradation and healing in a generalized neo-Hookean solid due to infusion of a fluid

    Full text link
    The mechanical response and load bearing capacity of high performance polymer composites changes due to diffusion of a fluid, temperature, oxidation or the extent of the deformation. Hence, there is a need to study the response of bodies under such degradation mechanisms. In this paper, we study the effect of degradation and healing due to the diffusion of a fluid on the response of a solid which prior to the diffusion can be described by the generalized neo-Hookean model. We show that a generalized neo-Hookean solid - which behaves like an elastic body (i.e., it does not produce entropy) within a purely mechanical context - creeps and stress relaxes when infused with a fluid and behaves like a body whose material properties are time dependent. We specifically investigate the torsion of a generalized neo-Hookean circular cylindrical annulus infused with a fluid. The equations of equilibrium for a generalized neo-Hookean solid are solved together with the convection-diffusion equation for the fluid concentration. Different boundary conditions for the fluid concentration are also considered. We also solve the problem for the case when the diffusivity of the fluid depends on the deformation of the generalized neo-Hookean solid.Comment: 24 pages, 10 figures, submitted to Mechanics of Time-dependent Material
    • …
    corecore