79 research outputs found
Comparison of two non-primitive methods for path integral simulations: Higher-order corrections vs. an effective propagator approach
Two methods are compared that are used in path integral simulations. Both
methods aim to achieve faster convergence to the quantum limit than the
so-called primitive algorithm (PA). One method, originally proposed by
Takahashi and Imada, is based on a higher-order approximation (HOA) of the
quantum mechanical density operator. The other method is based upon an
effective propagator (EPr). This propagator is constructed such that it
produces correctly one and two-particle imaginary time correlation functions in
the limit of small densities even for finite Trotter numbers P. We discuss the
conceptual differences between both methods and compare the convergence rate of
both approaches. While the HOA method converges faster than the EPr approach,
EPr gives surprisingly good estimates of thermal quantities already for P = 1.
Despite a significant improvement with respect to PA, neither HOA nor EPr
overcomes the need to increase P linearly with inverse temperature. We also
derive the proper estimator for radial distribution functions for HOA based
path integral simulations.Comment: 17 pages, latex, 6 postscript figure
Herbaceous plants in the understory of a pitch canker-affected Pinus radiata plantation are endophytically infected with Fusarium circinatum
[EN] Fusarium circinatum was recently detected as an endophyte in grasses causing no apparent damage. Our goal was to describe the endophytic colonization of herbaceous host plants growing in a plantation of Pinus radiata with symptoms of pitch canker disease, which may act as a reservoir of inoculum. We detected the fungus in five species of dicot families (Asteraceae, Lamiaceae, Rosaceae), in addition to two species in the Poaceae. The fungus was found in the aerial part of non-symptomatic hosts, so we describe E circinatum as an endophyte that is mainly transmitted by spores through the air. It was also detected in Hypochaeris radicata seeds, suggesting the potential occurrence of vertical transmission. An analysis of microsatellite markers showed a unique haplotype regardless of whether the isolates' origin was pine cankers or non-symptomatic herbaceous plants. Thus, the same genotype can adopt a pathogenic or endophytic lifestyle. We conclude that non -symptomatic plants can act as reservoirs of inoculum: pine seedlings can be infeded from senescent tissue of non-symptomatic hosts colonized by the fungus. (C) 2017 Elsevier Ltd and British Mycological Society. All rights reserved.We acknowledge Maite Morales Clemente for her excellent technical assistance and Inigo Zabalgogeazcoa for his helpful suggestions. Laura Hernandez was supported by a fellowship from INIA (FPI-INIA). Financial support for this research was provided by projects RTA2012-00015-C02-01 and RTA2013-00048-C03-01 (Programa Estatal I + D + i, INIA, Spain).Hernandez-Escribano, L.; Iturritxa, E.; Elvira-Recuenco, M.; Berbegal Martinez, M.; Campos, J.; Renobales, G.; García, I.... (2018). Herbaceous plants in the understory of a pitch canker-affected Pinus radiata plantation are endophytically infected with Fusarium circinatum. Fungal Ecology. 32:65-71. https://doi.org/10.1016/j.funeco.2017.12.001S65713
A Review of the fossil record of turtles of the clade Baenidae
The fossil record of the turtle clade Baenidae ranges from the Early Cretaceous (Aptian—Albian) to the Eocene. The group is present throughout North America during the Early Cretaceous, but is restricted to the western portions of the continents in the Late Cretaceous and Paleogene. No credible remains of the clade have been reported outside of North America to date. Baenids were warmadapted freshwater aquatic turtles that supported high levels of diversity at times through niche partitioning, particularly by adapting to a broad range of dietary preferences ranging from omnivorous to molluscivorous. Current phylogenies place Baenidae near the split of crown-group Testudines. Within Baenidae three more inclusive, named clades are recognized: Baenodda, Palatobaeninae and Eubaeninae. A taxonomic review of the group concludes that of 49 named taxa, 30 are nomina valida, 12 are nomina invalida and 7 are nomina dubia
The Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev–Zel’dovich Galaxy Clusters
We present a catalog of 4195 optically confirmed Sunyaev–Zel'dovich (SZ) selected galaxy clusters detected with signal-to-noise ratio >4 in 13,211 deg2 of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multifrequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008 to 2018 and confirmed using deep, wide-area optical surveys. The clusters span the redshift range 0.04 1 clusters, and a total of 868 systems are new discoveries. Assuming an SZ signal versus mass-scaling relation calibrated from X-ray observations, the sample has a 90% completeness mass limit of M500c > 3.8 × 1014 M⊙, evaluated at z = 0.5, for clusters detected at signal-to-noise ratio >5 in maps filtered at an angular scale of 2farcm4. The survey has a large overlap with deep optical weak-lensing surveys that are being used to calibrate the SZ signal mass-scaling relation, such as the Dark Energy Survey (4566 deg2), the Hyper Suprime-Cam Subaru Strategic Program (469 deg2), and the Kilo Degree Survey (825 deg2). We highlight some noteworthy objects in the sample, including potentially projected systems, clusters with strong lensing features, clusters with active central galaxies or star formation, and systems of multiple clusters that may be physically associated. The cluster catalog will be a useful resource for future cosmological analyses and studying the evolution of the intracluster medium and galaxies in massive clusters over the past 10 Gyr
Digital Image Compression
ted a numerical value, proportional to the brightness of that point. Typical choices for these values fall in the ranges 0 - 31 or 0 - 255 (requiring respectively 4 and 8 bits for each pixel). This second kind of image is referred to as a gray-level picture. Color images take advantage of the fact that each color can be expressed as a combination of three "primary" colors (Red, Green and Blue or Yellow, Magenta and Cyan, for example), a color picture can be considered as the superimposition of three "simpler" pictures (which are called color planes), where each of them encodes the brightness of a primary color. In other words, each color plane of an image can be treated much like the gray-level picture with a range of values based on the luminosity of that particular color. This sort of representation, called RGB or YMC according to the color planes, is "hardware oriented" (monitors, printers and photographic devices use these color schemes), and it is preferable whe
- …