4 research outputs found

    Effects of annealing treatment prior to cold rolling on delayed fracture properties in ferrite-austenite duplex lightweight steels

    Get PDF
    Tensile properties of recently developed automotive high-strength steels containing about 10 wt pct of Mn and Al are superior to other conventional steels, but the active commercialization has been postponed because they are often subjected to cracking during formation or to the delayed fracture after formation. Here, the delayed fracture behavior of a ferrite-austenite duplex lightweight steel whose microstructure was modified by a batch annealing treatment at 1023 K (750 A degrees C) prior to cold rolling was examined by HCl immersion tests of cup specimens, and was compared with that of an unmodified steel. After the batch annealing, band structures were almost decomposed as strong textures of {100}aOE (c) 011 > alpha-fibers and {111}aOE (c) 112 > gamma-fibers were considerably dissolved, while ferrite grains were refined. The steel cup specimen having this modified microstructure was not cracked when immersed in an HCl solution for 18 days, whereas the specimen having unmodified microstructure underwent the delayed fracture within 1 day. This time delayed fracture was more critically affected by difference in deformation characteristics such as martensitic transformation and deformation inhomogeneity induced from concentration of residual stress or plastic strain, rather than the difference in initial microstructures. The present work gives a promise for automotive applications requiring excellent mechanical and delayed fracture properties as well as reduced specific weight.ope

    Hydrogen Embrittlement Of Automotive Advanced High-Strength Steels

    No full text
    Advanced High Strength Steels (AHSS) have a better combination between strength and ductility than conventional HSS and higher crash resistances are obtained in concomitance with weight reduction of car structural components. These steels have been developed in last decades and their use is rapidly increasing. Notwithstanding, some their important features have to be still understood and studied in order to completely characterize their service behavior. In particular, the high mechanical resistance of AHSS makes hydrogen related problems a great concern for this steel grades. This paper investigates the hydrogen embrittlement (HE) of four AHSS steels. The behavior of one TRIP, two martensitic with different strength levels and one hot stamping steels have been studied using Slow Strain Rate Tensile (SSRT) tests on electrochemically hydrogenated notched samples. The embrittlement susceptibility of these AHSS steels has been correlated mainly to their strength level and to their microstructural features. Finally, the hydrogen critical concentrations for HE, established by SSRT tests, have been compared to Hydrogen contents absorbed during the painting process of Body In White (BIW) structure, experimentally determined during a real cycle in an industrial plant
    corecore