218 research outputs found

    On the Erasure and Regeneration of the Primordial Baryon Asymmetry by Sphalerons

    Full text link
    We show that a cosmological baryon asymmetry generated at the GUT scale, which would be destroyed at lower temperatures by sphalerons and possible new B- or L-violating effects, can naturally be preserved by an asymmetry in the number of right-handed electrons. This results in a significant softening of previously derived baryogenesis-based constraints on the strength of exotic B- or L-violating interactions.Comment: 10 pp. LaTex (2 figures, included) UMN-TH-1201/9

    BBN and the Primordial Abundances

    Full text link
    The relic abundances of the light elements synthesized during the first few minutes of the evolution of the Universe provide unique probes of cosmology and the building blocks for stellar and galactic chemical evolution, while also enabling constraints on the baryon (nucleon) density and on models of particle physics beyond the standard model. Recent WMAP analyses of the CBR temperature fluctuation spectrum, combined with other, relevant, observational data, has yielded very tight constraints on the baryon density, permitting a detailed, quantitative confrontation of the predictions of Big Bang Nucleosynthesis with the post-BBN abundances inferred from observational data. The current status of this comparison is presented, with an emphasis on the challenges to astronomy, astrophysics, particle physics, and cosmology it identifies.Comment: To appear in the Proceedings of the ESO/Arcetri Workshop on "Chemical Abundances and Mixing in Stars in the Milky Way and its Satellites", eds., L. Pasquini and S. Randich (Springer-Verlag Series, "ESO Astrophysics Symposia"

    Primordial black holes in braneworld cosmologies: astrophysical constraints

    Get PDF
    In two recent papers we explored the modifications to primordial black hole physics when one moves to the simplest braneworld model, Randall--Sundrum type II. Both the evaporation law and the cosmological evolution of the population can be modified, and additionally accretion of energy from the background can be dominant over evaporation at high energies. In this paper we present a detailed study of how this impacts upon various astrophysical constraints, analyzing constraints from the present density, from the present high-energy photon background radiation, from distortion of the microwave background spectrum, and from processes affecting light element abundances both during and after nucleosynthesis. Typically, the constraints on the formation rate of primordial black holes weaken as compared to the standard cosmology if black hole accretion is unimportant at high energies, but can be strengthened in the case of efficient accretion.Comment: 17 pages RevTeX4 file with three figures incorporated; final paper in series astro-ph/0205149 and astro-ph/0208299. Minor changes to match version accepted by Physical Review

    Leptogenesis and neutrino parameters

    Get PDF
    We calculate the baryonic asymmetry of the universe in the baryogenesis-via-leptogenesis framework, assuming first a quark-lepton symmetry and then a charged-neutral lepton symmetry. We match the results with the experimentally favoured range. In the first case all the oscillation solutions to the solar neutrino problem, except the large mixing matter solution, can lead to the allowed range, but with fine tuning of the parameters. In the second case the general result is quite similar. Some related theoretical hints are discussed.Comment: RevTex, 21 pages with 8 figure

    Large lepton asymmetry from Q-balls

    Full text link
    We propose a scenario which can explain large lepton asymmetry and small baryon asymmetry simultaneously. Large lepton asymmetry is generated through Affleck-Dine (AD) mechanism and almost all the produced lepton numbers are absorbed into Q-balls (L-balls). If the lifetime of the L-balls is longer than the onset of electroweak phase transition but shorter than the epoch of big bang nucleosynthesis (BBN), the large lepton asymmetry in the L-balls is protected from sphaleron effects. On the other hand, small (negative) lepton numbers are evaporated from the L-balls due to thermal effects, which are converted into the observed small baryon asymmetry by virtue of sphaleron effects. Large and positive lepton asymmetry of electron type is often requested from BBN. In our scenario, choosing an appropriate flat direction in the minimal supersymmetric standard model (MSSM), we can produce positive lepton asymmetry of electron type but totally negative lepton asymmetry.Comment: 10 pages, 3 figures, ReVTeX

    Cosmological Consequences of String-forming Open Inflation Models

    Get PDF
    We present a study of open inflation cosmological scenarios in which cosmic strings form betwen the two inflationary epochs. It is shown that in these models strings are stretched outside the horizon due to the inflationary expansion but must necessarily re-enter the horizon before the epoch of equal matter and radiation densities. We determine the power spectrum of cold dark matter perturbations in these hybrid models, finding good agreement with observations for values of Γ=Ω0h0.3\Gamma=\Omega_0h\sim0.3 and comparable contributions from the active and passive sources to the CMB. Finally, we briefly discuss other cosmological consequences of these models.Comment: 11 LaTeX pages with 3 eps figure

    Primordial Nucleosynthesis Constraints on Z' Properties

    Get PDF
    In models involving new TeV-scale Z' gauge bosons, the new U(1)' symmetry often prevents the generation of Majorana masses needed for a conventional neutrino seesaw, leading to three superweakly interacting ``right-handed'' neutrinos nu_R, the Dirac partners of the ordinary neutrinos. These can be produced prior to big bang nucleosynthesis by the Z' interactions, leading to a faster expansion rate and too much ^4He. We quantify the constraints on the Z' properties from nucleosynthesis for Z' couplings motivated by a class of E_6 models parametrized by an angle theta_E6. The rate for the annihilation of three approximately massless right-handed neutrinos into other particle pairs through the Z' channel is calculated. The decoupling temperature, which is higher than that of ordinary left-handed neutrinos due to the large Z' mass, is evaluated, and the equivalent number of new doublet neutrinos Delta N_nu is obtained numerically as a function of the Z' mass and couplings for a variety of assumptions concerning the Z-Z' mixing angle and the quark-hadron transition temperature T_c. Except near the values of theta_E6 for which the Z' decouples from the right-handed neutrinos, the Z' mass and mixing constraints from nucleosynthesis are much more stringent than the existing laboratory limits from searches for direct production or from precision electroweak data, and are comparable to the ranges that may ultimately be probed at proposed colliders. For the case T_c = 150 MeV with the theoretically favored range of Z-Z' mixings, Delta N_nu 4.3 TeV for any value of theta_E6. Larger mixing or larger T_c often lead to unacceptably large Delta N_nu except near the nu_R decoupling limit.Comment: 22 pages, 5 figures; two additional references adde

    FERMION ZERO MODES AND BLACK-HOLE HYPERMULTIPLETS WITH RIGID SUPERSYMMETRY

    Get PDF
    The gravitini zero modes riding on top of the extreme Reissner-Nordstrom black-hole solution of N=2 supergravity are shown to be normalizable. The gravitini and dilatini zero modes of axion-dilaton extreme black-hole solutions of N=4 supergravity are also given and found to have finite norms. These norms are duality invariant. The finiteness and positivity of the norms in both cases are found to be correlated with the Witten-Israel-Nester construction; however, we have replaced the Witten condition by the pure-spin-3/2 constraint on the gravitini. We compare our calculation of the norms with the calculations which provide the moduli space metric for extreme black holes. The action of the N=2 hypermultiplet with an off-shell central charge describes the solitons of N=2 supergravity. This action, in the Majumdar-Papapetrou multi-black-hole background, is shown to be N=2 rigidly supersymmetric.Comment: 18 pages, LaTe

    Spin Glass Ordering in Diluted Magnetic Semiconductors: a Monte Carlo Study

    Get PDF
    We study the temperature-dilution phase diagram of a site-diluted Heisenberg antiferromagnet on a fcc lattice, with and without the Dzyaloshinskii-Moriya anisotropic term, fixed to realistic microscopic parameters for IIB1xMnxTeIIB_{1-x} Mn_x Te (IIB=Cd, Hg, Zn). We show that the dipolar Dzyaloshinskii-Moriya anisotropy induces a finite-temperature phase transition to a spin glass phase, at dilutions larger than 80%. The resulting probability distribution of the order parameter P(q) is similar to the one found in the cubic lattice Edwards-Anderson Ising model. The critical exponents undergo large finite size corrections, but tend to values similar to the ones of the Edwards-Anderson-Ising model.Comment: 4 pages plus 3 postscript figure

    SuperWIMP Dark Matter Signals from the Early Universe

    Get PDF
    Cold dark matter may be made of superweakly-interacting massive particles, superWIMPs, that naturally inherit the desired relic density from late decays of metastable WIMPs. Well-motivated examples are weak-scale gravitinos in supergravity and Kaluza-Klein gravitons from extra dimensions. These particles are impossible to detect in all dark matter experiments. We find, however, that superWIMP dark matter may be discovered through cosmological signatures from the early universe. In particular, superWIMP dark matter has observable consequences for Big Bang nucleosynthesis and the cosmic microwave background (CMB), and may explain the observed underabundance of 7Li without upsetting the concordance between deuterium and CMB baryometers. We discuss implications for future probes of CMB black body distortions and collider searches for new particles. In the course of this study, we also present a model-independent analysis of entropy production from late-decaying particles in light of WMAP data.Comment: 19 pages, 5 figures, typos correcte
    corecore