70 research outputs found

    Closed String Amplitudes from Gauge Fixed String Field Theory

    Get PDF
    Closed string diagrams are derived from cubic open string field theory using a gauge fixed kinetic operator. The basic idea is to use a string propagator that does not generate a boundary to the world sheet. Using this propagator and the closed string vertex, the moduli space of closed string surfaces is covered, so closed string scattering amplitudes should be reproduced. This kinetic operator could be a gauge fixed form of the string field theory action around the closed string vacuum.Comment: 10 pages, revtex, 3 figures. Discussion on the covering of moduli expanded, version to appear in PR

    On different actions for the vacuum of bosonic string field theory

    Get PDF
    We study a family of kinetic operators in string field theory describing the theory around the closed string vacuum. Those operators are based on the analytical classical solutions of Takahashi and Tanimoto and are analogous to the pure ghost action usually referred to as "vacuum string field theory," but are much more general, and less singular than the pure ghost operator. The closed string vacuum is related to the D-brane vacuum by large, singular, gauge transformations or field redefinition, and all those different representations are related to each other by small gauge transformations. We try to clarify the nature of this singular gauge transformation. We also show that by choosing the Siegel gauge one recovers the propagator proposed in hep-th/0207266 that generates closed string surfaces.Comment: 15 page

    Pre-Hawking Radiation from a Collapsing Shell

    Full text link
    We investigate the effect of induced massive radiation given off during the time of collapse of a massive spherically symmetric domain wall in the context of the functional Schr\"odinger formalism. Here we find that the introduction of mass suppresses the occupation number in the infrared regime of the induced radiation during the collapse. The suppression factor is found to be given by e−ÎČme^{-\beta m}, which is in agreement with the expected Planckian distribution of induced radiation. Thus a massive collapsing domain wall will radiate mostly (if not exclusively) massless scalar fields, making it difficult for the domain wall to shed any global quantum numbers and evaporate before the horizon is formed.Comment: 10 pages, 3 figures. We updated the acknowledgments as well as added a statement clarifying that we are following the methods first laid out in Phys. Rev. D 76, 024005 (2007

    Wet chemical etching of single-bore microstructured silicon dioxide fibers

    Get PDF
    We model the process of wet chemical etching of the external surface of a single-bore microstructured silicon dioxide fiber in hydrofluoric acid (HFA) while water is pumped through the internal channel to prevent etching of it. The model uses the Stokes flow for the velocity throughout the system and the advection–diffusion equation for the concentration of HFA. We determine the etch rate as a function of HFA concentration using data from experiments designed for this purpose, from which we calculate the change in the fiber surface. We solve our equations using a time-stepping finite-element method and verify our model by comparing to results found experimentally. We investigate the effects of different water flow rates, diffusivity, buoyancy, and bore radius. We find the water being pumped through the bore does not fully protect it and there is some etching of the internal channel, which is difficult to see in experimental images. We also obtain an estimate of the diffusivity of high-concentration HFA in water.Josef A. Giddings, Yvonne M. Stokes, Kyle J. Bachus, and Heike Ebendorff-Heideprie

    Evolving Lorentzian Wormholes

    Full text link
    Evolving Lorentzian wormholes with the required matter satisfying the Energy conditions are discussed. Several different scale factors are used and the corresponding consequences derived. The effect of extra, decaying (in time) compact dimensions present in the wormhole metric is also explored and certain interesting conclusions are derived for the cases of exponential and Kaluza--Klein inflation.Comment: 10 pages( RevTex, Twocolumn format), Two figures available on request from the first author. transmission errors corrected

    Supersymmetry reduction of N-extended supergravities in four dimensions

    Get PDF
    We consider the possible consistent truncation of N-extended supergravities to lower N' theories. The truncation, unlike the case of N-extended rigid theories, is non trivial and only in some cases it is sufficient just to delete the extra N-N' gravitino multiplets. We explore different cases (starting with N=8 down to N'\geq 2) where the reduction implies restrictions on the matter sector. We perform a detailed analysis of the interesting case N=2 \to N=1. This analysis finds applications in different contexts of superstring and M-theory dynamics.Comment: Version published on JHE

    Computing in String Field Theory Using the Moyal Star Product

    Full text link
    Using the Moyal star product, we define open bosonic string field theory carefully, with a cutoff, for any number of string oscillators and any oscillator frequencies. Through detailed computations, such as Neumann coefficients for all string vertices, we show that the Moyal star product is all that is needed to give a precise definition of string field theory. The formulation of the theory as well as the computation techniques are considerably simpler in the Moyal formulation. After identifying a monoid algebra as a fundamental mathematical structure in string field theory, we use it as a tool to compute with ease the field configurations for wedge, sliver, and generalized projectors, as well as all the string interaction vertices for perturbative as well as monoid-type nonperturbative states. Finally, in the context of VSFT we analyze the small fluctuations around any D-brane vacuum. We show quite generally that to obtain nontrivial mass and coupling, as well as a closed strings, there must be an associativity anomaly. We identify the detailed source of the anomaly, but leave its study for future work.Comment: 77 pages, LaTeX. v3: corrections of signs or factors (for a list of corrections see beginning of source file

    Chern-Simons Vortices in Supergravity

    Get PDF
    We study supersymmetric vortex solutions in three-dimensional abelian gauged supergravity. First, we construct the general U(1)-gauged D=3, N=2 supergravity whose scalar sector is an arbitrary Kahler manifold with U(1) isometry. This construction clarifies the connection between local supersymmetry and the specific forms of some scalar potentials previously found in the literature -- in particular, it provides the locally supersymmetric embedding of the abelian Chern-Simons Higgs model. We show that the Killing spinor equations admit rotationally symmetric vortex solutions with asymptotically conical geometry which preserve half of the supersymmetry.Comment: 26 pages, LaTeX2

    Solitonic Strings and BPS Saturated Dyonic Black Holes

    Get PDF
    We consider a six-dimensional solitonic string solution described by a conformal chiral null model with non-trivial N=4N=4 superconformal transverse part. It can be interpreted as a five-dimensional dyonic solitonic string wound around a compact fifth dimension. The conformal model is regular with the short-distance (`throat') region equivalent to a WZW theory. At distances larger than the compactification scale the solitonic string reduces to a dyonic static spherically-symmetric black hole of toroidally compactified heterotic string. The new four-dimensional solution is parameterised by five charges, saturates the Bogomol'nyi bound and has nontrivial dilaton-axion field and moduli fields of two-torus. When acted by combined T- and S-duality transformations it serves as a generating solution for all the static spherically-symmetric BPS-saturated configurations of the low-energy heterotic string theory compactified on six-torus. Solutions with regular horizons have the global space-time structure of extreme Reissner-Nordstrom black holes with the non-zero thermodynamic entropy which depends only on conserved (quantised) charge vectors. The independence of the thermodynamic entropy on moduli and axion-dilaton couplings strongly suggests that it should have a microscopic interpretation as counting degeneracy of underlying string configurations. This interpretation is supported by arguments based on the corresponding six-dimensional conformal field theory. The expression for the level of the WZW theory describing the throat region implies a renormalisation of the string tension by a product of magnetic charges, thus relating the entropy and the number of oscillations of the solitonic string in compact directions.Comment: 27 Pages, uses RevTeX (solution for the axion field corrected, erratum to appear in Phys. Rev. D
    • 

    corecore