138 research outputs found

    Synthesis, Characterization and Mechanical Properties of Nanocrystalline NiAl

    Full text link
    Nanocrystalline NiAl was produced from pre-cast alloys using an electron beam inert gas condensation system. In-situ compaction was carried out at 100-300 C under vacuum conditions. Energy dispersive spectroscopy was used to determine chemical composition and homogeneity. Average grain sizes in the range 4-10 nm were found from TEM dark field analyses. A compression-cage fixture was designed to perform disk bend tests. These tests revealed substantial room temperature ductility in nanocrystalline NiAl, while coarse grained NiAl showed no measurable room temperature ductility

    Novel Thermal Properties of Nanostructured Materials

    Full text link

    Using MapMyFitness to place physical activity into neighborhood context

    Get PDF
    It is difficult to obtain detailed information on the context of physical activity at large geographic scales, such as the entire United States, as well as over long periods of time, such as over years. MapMyFitness is a suite of interactive tools for individuals to track theirworkouts online or using global positioning system in their phones or other wireless trackers. This method article discusses the use of physical activity data tracked using MapMyFitness to examine patterns over space and time. An overview of MapMyFitness, including data tracked, user information, and geographic scope, is explored. We illustrate the utility of MapMyFitness data using tracked physical activity by users in Winston-Salem, NC, USA between 2006 and 2013. Types of physical activities tracked are described, as well as the percent of activities occurring in parks. Strengths of MapMyFitness data include objective data collection, low participant burden, extensive geographic scale, and longitudinal series. Limitations include generalizability, behavioral change as the result of technology use, and potential ethical considerations. MapMyFitness is a powerful tool to investigate patterns of physical activity across large geographic and temporal scales

    Transit analysis package: An IDL graphical user interface for exoplanet transit photometry

    Get PDF
    We present an IDL graphical user-interface-driven software package designed for the analysis of exoplanet transit light curves. The Transit Analysis Package (TAP) software uses Markov Chain Monte Carlo (MCMC) techniques to fit light curves using the analytic model of Mandal and Agol (2002). The package incorporates a wavelet-based likelihood function developed by Carter and Winn (2009), which allows the MCMC to assess parameter uncertainties more robustly than classic 2 methods by parameterizing uncorrelated "white" and correlated "red" noise. The software is able to simultaneously analyze multiple transits observed in different conditions (instrument, filter, weather, etc.). The graphical interface allows for the simple execution and interpretation of Bayesian MCMC analysis tailored to a users specific data set and has been thoroughly tested on ground-based and Kepler photometry. This paper describes the software release and provides applications to new and existing data. Reanalysis of ground-based observations of TrES-1b, WASP-4b, and WASP-10b (Winn et al., 2007, 2009; Johnson et al., 2009; resp.) and space-based Kepler 4b-8b (Kipping and Bakos 2010) show good agreement between TAP and those publications. We also present new multi-filter light curves of WASP-10b and we find excellent agreement with previously published values for a smaller radius

    An eddy-correlation measurement of NO2 flux to vegetation and comparison to O3 flux

    Full text link
    Eddy-correlation measurements with a newly developed fast-response NOx sensor indicate that the deposition velocity at a height of about 6m above a soybean field has a maximum value near 0.6cms-1 for NOx and is usually about 2/3 ofthat found for ozone. In these studies, over 90% of the NOx is NO2. The corresponding minimum surface resistance for NOx calculated as the quantity remaining after atmospheric resistances are subtracted is about 1.3 s cm-1, which is larger than expected on the basis of leaf stomatal resistance alone. Emission of NO from sites in the plant canopy and soil where NO2 is deposited and reduced to NO or release of NOx as a result of biological activity may have lessened the downward fluxes of NOx as measured. During windy conditions at night, surface resistances are found to have values of about 15scm-1 for NOx (again, greater than 90% NO2) and 1.8scm-1 for O3, corresponding to deposition velocities of 0.05cms-1 and 0.3cms-1, respectively.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24138/1/0000395.pd

    TESS Reveals HD 118203 b to be a Transiting Planet

    Get PDF
    The exoplanet HD 118203 b, orbiting a bright (V = 8.05) host star, was discovered using the radial velocity method by da Silva et al., but was not previously known to transit. Transiting Exoplanet Survey Satellite (TESS) photometry has revealed that this planet transits its host star. Nine planetary transits were observed by TESS, allowing us to measure the radius of the planet to be 1.136-0.028 +0.029 R J, and to calculate the planet mass to be 2.166-0.079 +0.074 M J. The host star is slightly evolved with an effective temperature of T eff=5683-85 +84 K and a surface gravity of log\,g=3.889 0.018-0.017. With an orbital period of 6.134985-0.000030 +0.000029 days and an eccentricity of 0.314 ± 0.017, the planet occupies a transitional regime between circularized hot Jupiters and more dynamically active planets at longer orbital periods. The host star is among the 10 brightest known to have transiting giant planets, providing opportunities for both planetary atmospheric and asteroseismic studies

    TESS Reveals a Short-period Sub-Neptune Sibling (HD 86226c) to a Known Long-period Giant Planet

    Get PDF
    The Transiting Exoplanet Survey Satellite mission was designed to find transiting planets around bright, nearby stars. Here, we present the detection and mass measurement of a small, short-period (≈4 days) transiting planet around the bright (V = 7.9), solar-type star HD 86226 (TOI-652, TIC 22221375), previously known to host a long-period (∼1600 days) giant planet. HD 86226c (TOI-652.01) has a radius of 2.16 0.08 R ⊕ and a mass of M ⊕, based on archival and new radial velocity data. We also update the parameters of the longer-period, not-known-to-transit planet, and find it to be less eccentric and less massive than previously reported. The density of the transiting planet is 3.97 g cm-3, which is low enough to suggest that the planet has at least a small volatile envelope, but the mass fractions of rock, iron, and water are not well-constrained. Given the host star brightness, planet period, and location of the planet near both the "radius gap"and the "hot Neptune desert,"HD 86226c is an interesting candidate for transmission spectroscopy to further refine its composition

    TOI-1231 b: A Temperate, Neptune-sized Planet Transiting the Nearby M3 Dwarf NLTT 24399

    Get PDF
    We report the discovery of a transiting, temperate, Neptune-sized exoplanet orbiting the nearby (d = 27.5 pc), M3V star TOI-1231 (NLTT 24399, L 248-27, 2MASS J10265947-5228099). The planet was detected using photometric data from the Transiting Exoplanet Survey Satellite and followed up with observations from the Las Cumbres Observatory and the Antarctica Search for Transiting ExoPlanets program. Combining the photometric data sets, we find that the newly discovered planet has a radius of {3.65}_{-0.15}^{+0.16}\,{R}_{\oplus } and an orbital period of 24.246 days. Radial velocity measurements obtained with the Planet Finder Spectrograph on the Magellan Clay telescope confirm the existence of the planet and lead to a mass measurement of 15.5 3.3 M ⊕. With an equilibrium temperature of just 330 K, TOI-1231 b is one of the coolest small planets accessible for atmospheric studies thus far, and its host star's bright near-infrared brightness (J = 8.88, Ks = 8.07) makes it an exciting target for the Hubble Space Telescope and the James Webb Space Telescope. Future atmospheric observations would enable the first comparative planetology efforts in the 250-350 K temperature regime via comparisons with K2-18 b. Furthermore, TOI-1231's high systemic radial velocity (70.5 km s-1) may allow for the detection of low-velocity hydrogen atoms escaping the planet by Doppler, shifting the H i Lyα stellar emission away from the geocoronal and interstellar medium absorption features

    A pair of tess planets spanning the radius valley around the nearby mid-m dwarf ltt 3780

    Get PDF
    We present the confirmation of two new planets transiting the nearby mid-M dwarf LTT 3780 (TIC 36724087, TOI-732, V = 13.07, K s = 8.204, R s = 0.374 R o˙, M s = 0.401 M o˙, d = 22 pc). The two planet candidates are identified in a single Transiting Exoplanet Survey Satellite sector and validated with reconnaissance spectroscopy, ground-based photometric follow-up, and high-resolution imaging. With measured orbital periods of P b = 0.77, P c = 12.25 days and sizes r p,b = 1.33 ± 0.07, r p,c = 2.30 ± 0.16 R ⊕, the two planets span the radius valley in period-radius space around low-mass stars, thus making the system a laboratory to test competing theories of the emergence of the radius valley in that stellar mass regime. By combining 63 precise radial velocity measurements from the High Accuracy Radial velocity Planet Searcher (HARPS) and HARPS-N, we measure planet masses of mpb 2.62+ 0.48 and-0.46= mpc 8.6+1.6-1.3 M⊕, which indicates that LTT 3780b has a bulk composition consistent with being Earth-like, while LTT 3780c likely hosts an extended H/He envelope. We show that the recovered planetary masses are consistent with predictions from both photoevaporation and core-powered mass-loss models. The brightness and small size of LTT 3780, along with the measured planetary parameters, render LTT 3780b and c as accessible targets for atmospheric characterization of planets within the same planetary system and spanning the radius valley
    • …
    corecore