119 research outputs found
Conceptual Unification of Gravity and Quanta
We present a model unifying general relativity and quantum mechanics. The
model is based on the (noncommutative) algebra \mbox{{\cal A}} on the groupoid
\Gamma = E \times G where E is the total space of the frame bundle over
spacetime, and G the Lorentz group. The differential geometry, based on
derivations of \mbox{{\cal A}}, is constructed. The eigenvalue equation for the
Einstein operator plays the role of the generalized Einstein's equation. The
algebra \mbox{{\cal A}}, when suitably represented in a bundle of Hilbert
spaces, is a von Neumann algebra \mathcal{M} of random operators representing
the quantum sector of the model. The Tomita-Takesaki theorem allows us to
define the dynamics of random operators which depends on the state \phi . The
same state defines the noncommutative probability measure (in the sense of
Voiculescu's free probability theory). Moreover, the state \phi satisfies the
Kubo-Martin-Schwinger (KMS) condition, and can be interpreted as describing a
generalized equilibrium state. By suitably averaging elements of the algebra
\mbox{{\cal A}}, one recovers the standard geometry of spacetime. We show that
any act of measurement, performed at a given spacetime point, makes the model
to collapse to the standard quantum mechanics (on the group G). As an example
we compute the noncommutative version of the closed Friedman world model.
Generalized eigenvalues of the Einstein operator produce the correct components
of the energy-momentum tensor. Dynamics of random operators does not ``feel''
singularities.Comment: 28 LaTex pages. Substantially enlarged version. Improved definition
of generalized Einstein's field equation
The SUrvey for Pulsars and Extragalactic Radio Bursts â II. New FRB discoveries and their follow-up
We report the discovery of four Fast Radio Bursts (FRBs) in the ongoing SUrvey for Pulsars and Extragalactic Radio Bursts at the Parkes Radio Telescope: FRBs 150610, 151206, 151230 and 160102. Our real-time discoveries have enabled us to conduct extensive, rapid multimessenger follow-up at 12 major facilities sensitive to radio, optical, X-ray, gamma-ray photons and neutrinos on time-scales ranging from an hour to a few months post-burst. No counterparts to the FRBs were found and we provide upper limits on afterglow luminosities. None of the FRBs were seen to repeat. Formal fits to all FRBs show hints of scattering while their intrinsic widths are unresolved in time. FRB 151206 is at low Galactic latitude, FRB 151230 shows a sharp spectral cut-off, and FRB 160102 has the highest dispersion measure (DM = 2596.1 ± 0.3âpcâcmâ3) detected to date. Three of the FRBs have high dispersion measures (DM > 1500âpcâcmâ3), favouring a scenario where the DM is dominated by contributions from the intergalactic medium. The slope of the Parkes FRB source counts distribution with fluences >2âJyâms is α=â2.2+0.6â1.2 and still consistent with a Euclidean distribution (α = â3/2). We also find that the all-sky rate is 1.7+1.5â0.9Ă103 FRBs/(4Ï sr)/day above âŒ2Jyms and there is currently no strong evidence for a latitude-dependent FRB sky rate
An Observational Overview of Solar Flares
We present an overview of solar flares and associated phenomena, drawing upon
a wide range of observational data primarily from the RHESSI era. Following an
introductory discussion and overview of the status of observational
capabilities, the article is split into topical sections which deal with
different areas of flare phenomena (footpoints and ribbons, coronal sources,
relationship to coronal mass ejections) and their interconnections. We also
discuss flare soft X-ray spectroscopy and the energetics of the process. The
emphasis is to describe the observations from multiple points of view, while
bearing in mind the models that link them to each other and to theory. The
present theoretical and observational understanding of solar flares is far from
complete, so we conclude with a brief discussion of models, and a list of
missing but important observations.Comment: This is an article for a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
Pulsar Wind Nebulae with Bow Shocks: Non-thermal Radiation and Cosmic Ray Leptons
Pulsars with high spin-down power produce relativistic winds radiating a non-negligible fraction of this power over the whole electromagnetic range from radio to gamma-rays in the pulsar wind nebulae (PWNe). The rest of the power is dissipated in the interactions of the PWNe with the ambient interstellar medium (ISM). Some of the PWNe are moving relative to the ambient ISM with supersonic speeds producing bow shocks. In this case, the ultrarelativistic particles accelerated at the termination surface of the pulsar wind may undergo reacceleration in the converging flow system formed by the plasma outflowing from the wind termination shock and the plasma inflowing from the bow shock. The presence of magnetic perturbations in the flow, produced by instabilities induced by the accelerated particles themselves, is essential for the process to work. A generic outcome of this type of reacceleration is the creation of particle distributions with very hard spectra, such as are indeed required to explain the observed spectra of synchrotron radiation with photon indices ÎâČ 1.5. The presence of this hard spectral component is specific to PWNe with bow shocks (BSPWNe). The accelerated particles, mainly electrons and positrons, may end up containing a substantial fraction of the shock ram pressure. In addition, for typical ISM and pulsar parameters, the e+ released by these systems in the Galaxy are numerous enough to contribute a substantial fraction of the positrons detected as cosmic ray (CR) particles above few tens of GeV and up to several hundred GeV. The escape of ultrarelativistic particles from a BSPWNâand hence, its appearance in the far-UV and X-ray bandsâis determined by the relative directions of the interstellar magnetic field, the velocity of the astrosphere and the pulsar rotation axis. In this respect we review the observed appearance and multiwavelength spectra of three different types of BSPWNe: PSR J0437-4715, the Guitar and Lighthouse nebulae, and Vela-like objects. We argue that high resolution imaging of such objects provides unique information both on pulsar winds and on the ISM. We discuss the interpretation of imaging observations in the context of the model outlined above and estimate the BSPWN contribution to the positron flux observed at the Earth
Crystal structures of penicillin acylase enzyme-substrate complexes: Structural insights into the catalytic mechanism
The crystal structure of penicillin G acylase from Escherichia coli has been determined to a resolution of 1.3 Ă
from a crystal form grown in the presence of ethylene glycol. To study aspects of the substrate specificity and catalytic mechanism of this key biotechnological enzyme, mutants were made to generate inactive protein useful for producing enzyme-substrate complexes. Owing to the intimate association of enzyme activity and precursor processing in this protein family (the Ntn hydrolases), most attempts to alter active-site residues lead to processing defects. Mutation of the invariant residue Arg B263 results in the accumulation of a protein precursor form. However, the mutation of Asn B241, a residue implicated in stabilisation of the tetrahedral intermediate during catalysis, inactivates the enzyme but does not prevent autocatalytic processing or the ability to bind substrates. The crystal structure of the Asn B241 Ala oxyanion hole mutant enzyme has been determined in its native form and in complex with penicillin G and penicillin G sulphoxide. We show that Asn B241 has an important role in maintaining the active site geometry and in productive substrate binding, hence the structure of the mutant protein is a poor model for the Michaelis complex. For this reason, we subsequently solved the structure of the wild-type protein in complex with the slowly processed substrate penicillin G sulphoxide. Analysis of this structure suggests that the reaction mechanism proceeds via direct nucleophilic attack of Ser B1 on the scissile amide and not as previously proposed via a tightly H-bonded water molecule acting as a âvirtualâ base
- âŠ